SEMESTER 1 ELECTRONICS & COMMUNICATION ENGINEERING

SEMESTER S1

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 1

Course Code	GYMAT101	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus and matrix operations.	Course Type	Theory

Course Objectives:

- **1.** To provide a comprehensive understanding and basic techniques of matrix theory to analyze linear systems.
- **2.** To offer advanced knowledge and practical skills in solving second-order ordinary differential equations, applying Laplace transforms, and understanding Fourier series, enabling students to analyze and model dynamic systems encountered in engineering disciplines effectively.

Module No.	Syllabus Description				
1	Linear systems of equations: Gauss elimination, Row echelon form, Linear Independence: rank of a matrix, Solutions of linear systems: Existence, Uniqueness (without proof), The matrix Eigen Value Problem, Determining Eigen values and Eigen vector, Diagonalization of matrices. (Text 1: Relevant topics from sections 7.3, 7.4, 7.5, 8.1, 8.4)	9			

3	problems by Laplace transform (Second order linear ODE with constant coefficients with initial conditions at t=0 only), Unit step function, Second shifting theorem, Dirac delta function and its transform (Initial value problems involving unit step function and Dirac delta function are excluded), Convolution theorem (without proof) and its application to finding inverse Laplace transform of products of functions. (Text 1: Relevant topics from sections 6.1, 6.2, 6.3, 6.4, 6.5)	9
	Taylor series representation (without proof, assuming the possibility of power series expansion in appropriate domains), Maclaurin series representation, Fourier series, Euler formulas, Convergence of Fourier	

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each module.	Each question carries 9 marks.Two questions will be given from each	
• Total of 8 Questions, each carrying 3 marks	module, out of which 1 question should be answered.	60
(8x3 =24marks)	 Each question can have a maximum of 3 sub divisions. (4x9 = 36 marks) 	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Solve systems of linear equations and diagonalize matrices.	К3
CO2	Solve homogeneous and non-homogeneous linear differential equation with constant coefficients.	К3
CO3	Compute Laplace transform and apply it to solve ODEs arising in engineering.	К3
CO4	Determine the Taylor series and evaluate Fourier series expansion for different periodic functions.	К3

Note: *K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create* CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

Text Books						
Sl. N o	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016		
2	Calculus	H.Anton, I.Biven, S.Davis	Wiley	12 th edition, 2024		

	Reference Books					
Sl. N	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023		
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017		
3	Elementary Linear Algebra	Howard Anton, Chris Rorres	Wiley	11 th edition, 2019		
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021		
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023		
6	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024		
7	Signals and Systems	Simon Haykin, Barry Van Veen	Wiley	2 nd edition, 2002		

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://archive.nptel.ac.in/courses/111/107/111107164/			
2	https://archive.nptel.ac.in/courses/111/104/111104031/			
3	https://archive.nptel.ac.in/courses/111/106/111106139/			
4	https://archive.nptel.ac.in/courses/111/101/111101164/			

SEMESTER S1/S2 PHYSICS FOR ELECTRICAL SCIENCE

Course Code	GBPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:1:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1. To provide students with a solid background in the fundamentals of Physics and to impart this knowledge in Electrical Science disciplines.
- **2.** To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- **3.** To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

Module	Syllabus Description	
No.		
1	Semiconductor Physics Intrinsic semiconductor, Derivation of density of electrons in conduction band and density of holes in valence band, Intrinsic carrier concentration, Variation of Intrinsic carrier concentration with temperature, Extrinsic semiconductor (qualitative) Formation of p-n junction, Fermi level in semiconductors-intrinsic and extrinsic, Energy band diagram of p-n junction - Qualitative description of charge flow across a p-n junction - Forward and reverse biased p-n	9
	junctions, Diode equation (Derivation), V-I Characteristics of p-n junction	

	Semiconductor Devices				
	Semiconductor devices - Rectifiers- Full wave and Half wave, Zener				
	diode - V-I characteristics - Zener breakdown and Avalanche breakdown,				
	Tunnel diode - V-I characteristics, Applications of Zener and Tunnel				
2	diodes.	9			
	Photonic devices (qualitative) - Photo detectors (Junction and PIN				
	photodiodes), Applications, Solar cells- V-I Characteristics, Efficiency,				
	Stringing of Solar cells to solar panel, Light Emitting Diode, Applications				
	of LED				
	Superconductivity & Dielectrics				
	Super conductivity, Transition temperature, Critical field, Meissner effect,				
	Type I and Type II Super conductors, Applications of superconductors.				
2	Dielectric constant, Polarization, Permittivity- relative permittivity,				
3	Relation between polarization and dielectric constant, Types of Polarization,	9			
	Internal fields in liquids and solids, Clausius Mossotti				
	Relation, Dielectric loss(qualitative), Dielectric breakdown (qualitative)				
	Laser & Fiber Optics				
	Optical processes - Absorption, Spontaneous emission and stimulated				
	emission, Properties of laser, Principle of laser - conditions for sustained				
	lasing – Population inversion, Pumping, Metastable states, Basic				
4	components of laser - Active medium- Optical resonant cavity,	9			
7	Construction and working of Ruby laser, Semiconductor Laser				
	(Qualitative), Applications of laser.				
	Optical fiber-Principle of propagation of light, Types of fibers-Step index				
	and Graded index fibers, Numerical aperture -Derivation, Applications of				
	optical fibers - Fiber optic communication system (block diagram)				

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamentals of Semiconductor Physics.	K2
CO2	Describe the behaviour of semiconductor materials in semiconductor devices.	K2
CO3	Explain Superconductivity and basic theory of dielectrics	K2
CO4	Apply the comprehended knowledge about laser and fibre optics in various engineering applications	К3
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	2										3
CO5	3	2			3				2			3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003						
2	Engineering Physics	H K Malik and A K Singh	McGraw Hill	2 nd Edition, 2017						
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018						

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995			
2	Advanced Semiconductor Fundamental Robert F Pierret Pearson Education		2 nd Edition, 2002				
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010			
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022			
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019			
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017			
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016			

	Video Links (NPTEL, SWAYAM etc)							
Module No. Link ID								
1	https://nptel.ac.in/courses/108106181							
2	https://nptel.ac.in/courses/108108112							
3	3 https://nptel.ac.in/courses/115103108							
4	https://nptel.ac.in/courses/115102124							

1. Continuous Assessment (10 Marks)

i. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

ii. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

iii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

iv. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

2. Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

 Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List

Laboratory Experiments to be conducted in the virtual lab mode

(Minimum 6 Experiments)

	(Minimum o Experiments)				
Experiment No.	Experiment				
1	Diode characteristics				
2	Zener diode- V-I characteristics				
3	Tunnel diode –V-I characteristics				
4	Half wave rectifier				
5	Full wave rectifier				
6	Hall effect in semiconductors				
7	Determination of band gap energy of a semiconductor				
8	Characteristics of LED				
9	Solar Cell- V-I and Intensity Characteristics				

10	Laser – Determination of wavelength using diffraction grating
11	Laser- To measure the wavelength using a millimetre scale as a grating
12	Compare the variation of current with potential difference, for a metal, filament bulb and semiconductor diode.
13	Determination of dielectric constant
14	CRO -Measurement of frequency and amplitude of wave forms
15	Photo diode- V-I Characteristics
16	Numerical aperture of optical fiber

SEMESTER S1/S2

CHEMISTRY FOR INFORMATION SCIENCE & ELECTRICAL SCIENCE

Course Code	GXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:1:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory+ Lab

Course Objectives:

- **1.** To equip students with a comprehensive understanding of chemistry concepts that are relevant to engineering applications.
- **2.** To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- **3.** To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on the quality of life.

Module No.	Syllabus Description						
	Electrochemistry and Corrosion Science						
	Electrochemical Cell- Electrode potential- Nernst equation for single						
	electrode and cell (Numerical problems)- Reference electrodes - SHE &						
	Calomel electrode -Construction and Working - Electrochemical series -						
	Applications - Glass Electrode & pH Measurement-Conductivity-						
1	Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel						
	cell (acid electrolyte only) construction and working.	9					
	Corrosion -Electrochemical corrosion mechanism (acidic & alkaline						
	medium) - Galvanic series - Corrosion control methods - Cathodic Protection						
	- Sacrificial anodic protection and impressed current cathodic protection -						
	Electroplating of copper - Electroless plating of copper.						

	Materials for Electronic Applications	
	Nanomaterials - Classification based on Dimension & Materials - Synthesis	
	- Sol gel & Chemical Reduction - Applications of nanomaterials - Carbon	
	Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots – structure,	
	properties & application.	
	Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated	
2	polymers (Examples only)- Conducting Polymers-Classification-	9
	Polyaniline & Polypyrrole-synthesis, properties and applications.	
	Organic electronic materials and devices- construction, working and	
	applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized	
	Solar Cells (DSSC)	
	Materials used in Quantum computing Technology, Super capacitors,	
	Spintronics	
	Molecular Spectroscopy and Analytical Techniques	
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's	
	law - Numerical problems - Electronic Spectroscopy - Principle, Types of	
	electronic transitions -Role of conjugation in absorption maxima-	
	Instrumentation-Applications - Vibrational spectroscopy - Principle-	
3	Number of vibrational modes - Vibrational modes of CO_2 and H_2O -	9
	Applications	
	Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-	
	Working and Application.	
	Electron Microscopic Techniques: SEM - Principle, instrumentation and	
	Applications.	
	Environmental Chemistry	
	Water characteristics - Hardness - Types of hardness- Temporary and	
	Permanent - Disadvantages of hard water -Degree of hardness (Numericals)	
	Water softening methods-Ion exchange process- Principle, procedure and	0
4	advantages. Reverse osmosis – principle, process and advantages. – Water	9
	disinfection methods – chlorination-Break point chlorination, ozone and UV	
	irradiation. Dissolved oxygen (DO), BOD and COD- Definition &	
	Significance.	

Waste Management: Sewage water treatment- Primary, Secondary and	
Tertiary - Flow diagram -Trickling filter and UASB process. E Waste,	
Methods of disposal - recycle, recovery and reuse. Chemistry of climate	
change- Greenhouse Gases- Ozone Depletion-Sustainable Development- an	
introduction to Sustainable Development Goals.	

Self-Study Topics (NOT TO BE INCLUDED FOR END SEMESTER EXAMINATION): Construction, working and applications of Lead acid battery, Nickel cadmium battery and Nickel metal hybrid battery.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
	Explain the Basic Concepts of Electrochemistry and Corrosion to explore					
CO1	the possible applications in various engineering fields	K2				
CO2	CO2 Describe the use of various engineering materials in different industries					
	Apply appropriate analytical techniques for the synthesis and					
CO3	CO3 characterization of various engineering materials.					
CO4	Outline various water treatment and waste management methods	K2				

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018				
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018				
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005				
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015				

			D.Tech 2	025-31/32				
	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995				
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017				
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015				
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996				
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014				
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024				
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008				

Video Links (NPTEL, SWAYAM)						
Module No. Link ID						
	https://archive.nptel.ac.in/courses/104/106/104106137/					
	https://archive.nptel.ac.in/courses/113/105/113105102/					
1	https://archive.nptel.ac.in/courses/113/104/113104082/					
	https://www.youtube.com/watch?v=BeSxFLvk1h0					
	https://archive.nptel.ac.in/courses/113/104/113104102/					
2	https://archive.nptel.ac.in/courses/104/105/104105124/					
<u>-</u>	https://archive.nptel.ac.in/courses/105/104/105104157/					

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

1. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of
 experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

1. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

2. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

3. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments Laboratory Experiments to be conducted in the virtual Mode

*Minimum 6 Experiments

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
5	Synthesis of polymers (a) Urea-formaldehyde resin (b) Phenol-formaldehyde resin
6	Determination of wavelength of absorption maximum and colorimetric estimation of Fe^{3+} in solution
7	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC

10	Estimation of total hardness of water-EDTA method		
11	Estimation of dissolved oxygen by Winkler's method		
12	Determination of calorific value using Bomb calorimeter		
13	13 Determination of saponification value of a given vegetable oil		
14	Determination of acid value of a given vegetable oil		
15	Verification of Nernst equation for electrochemical cell.		

Semester S1/S2

ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

Course Code	GMEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. To learn the principles and techniques of dimensioning and preparing engineering drawings.
- 2. To develop the ability to accurately interpret and understand engineering drawings.
- **3.** To learn the features of CAD software

Module No.	Syllabus Description					
	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination)					
1	Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of a line. Inclination of lines with reference planes. True length and true inclinations of line inclined to both the reference planes.	9				

2	Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder only. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.	9
3	Sections of Solids: Sections of Prisms, Pyramids, Cone and Cylinder only, with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems) Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes. (Exclude problems with through holes)	9
4	Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Sphere, Hemisphere and their combinations. Computer Aided Drawing (CAD): Introduction, Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitable software. (CAD, only internal evaluation)	9

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment+ Lab Exam	Internal Examination-1	Internal Examination- 2	Total
5	10+5	10	10	40

End Semester Examination Marks (ESE)

Student can choose any one full question out of two questions from each module

2 Questions from one module.	Total
Total 8 Questions, each question carries 15 marks	60
(15x4 =60 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the projection of points and lines located in different quadrants	K2
CO2	Prepare Multiview orthographic projections of objects by visualizing them in different positions	К3
CO3	Plot sectional views and develop surfaces of a given object	К3
CO4	Prepare pictorial drawings using the principles of isometric projection	К3
CO5	Sketch simple drawing using CAD tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2	2		3							

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	2018 edn				
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers	2016 edn				
3	Engineering Graphics	John, K. C.	Prentice Hall India Publishers	2017 edn				
4	Engineering Drawing,	Bhatt, N., D.	Charotar Publishing House Pvt Ltd.	60th edn 2019				
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers	2022 edn				

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.,	Prentice Hall India Publishers	2020					
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	5th edn 2011					
3	Engineering Drawing	Parthasarathy, N. S., and Murali, V.	Oxford University Press	2015 edn					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/112/102/112102304/						
2	https://archive.nptel.ac.in/courses/112/102/112102304/						
3	https://archive.nptel.ac.in/courses/112/102/112102304/						
4	https://archive.nptel.ac.in/courses/112/102/112102304/						

SEMESTER S1/S2 ENGINEERING MECHANICS

Course Code	GBEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-1-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. The course aims to enable students to analyse and solve fundamental mechanics problems

Module No.	Syllabus Description					
1	Introduction to statics: introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations, forces in space. Support reactions of beams (point load and UDL only) Force systems: rectangular components in 2D and 3D, moment and couple, resultants Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D	10				
2	Friction: -laws of friction – analysis of blocks and ladder Centroid of composite areas- – moment of inertia- parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring and disc	10				
3	Dynamics – rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle. –motion on horizontal and inclined surfaces, motion of connected bodies	8				
4	Curvilinear translation - equations of kinematics projectile motion (solution starting from differential equations) Rotation - kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis -rotation under a constant moment	8				

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination- 1(Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the vector representation of forces and moments	K2
CO2	Identify and describe the components of system of forces acting on the rigid body	К3
CO3	Apply the conditions of equilibrium to different force system.	К3
CO4	Identify appropriate principles to solve problems of mechanics.	К3
CO5	Develop the understanding of fundamental principles of rigid body dynamics	К3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	2										

	Text Books					
Sl. N	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Mechanics	Timoshenko and Young	McGraw Hill Publishers	5 th Edition 2017		
2	Engineering Mechanics: Combined Statics and Dynamics	Russell C. Hibbeler	Pearson Education,	14 th Edition 2015		
3	Engineering Mechanics - Statics and Dynamics,	Shames, I. H.	Prentice Hall ofIndia.	4 th Edition 2008		
4	Textbook of Engineering Mechanics	R. K. Bansal	Laxmi publications pvt ltd.	4 th Edition 2016		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Mechanics Statics	J. L. Meriam, L. G.	Wiley	9 th Edition 2020		
2	Engineering Mechanics	Kraige	PHI Learning	2011		

	Video Links (NPTEL, SWAYAM)				
	Link ID				
1	https://nptel.ac.in/courses/112106286				

SEMESTER S1/S2

INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

Course Code	GXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. To provide an understanding of the fundamental principles of electrical engineering
- 2. To introduce the working principles of fundamental electronic devices and circuits
- 3. To provide an overview of the basic concepts in different types of communication.

Module No.	Syllabus Description		
1	Elementary concepts of DC electric circuits: Current and Voltage Division Rule - Relative potential Capacitors & Inductors: V-I relations and Energy stored. Ohms Law and Kirchhoff's laws - numerical problems. Star-delta conversion (resistive networks only - derivation not required) - numerical problems. Analysis of DC Electric circuits: Mesh current method - matrix representation - Solution of network equations.	11	

	Node voltage methods-matrix representation-solution of network equations	
	by matrix methods - numerical problems.	
	Elementary Concepts of Magnetic circuits:	
	Magnetic Circuits: Basic Terminology: MMF, field strength, flux density,	
	reluctance - Comparison between electric and magnetic circuits - Series and	
	parallel magnetic circuits with composite materials (numerical problems not	
	needed)	
	Electromagnetic Induction: Faraday's laws, Lenz's law- statically induced and dynamically induced emf	
	- Self-inductance and mutual inductance, coefficient of coupling (numerical	
	problems not needed)	
	Alternating Current fundamentals:	
	Generation of alternating voltages - Representation of sinusoidal waveforms:	
	frequency, period, average value, RMS value and form factor - numerical	
	problems	
	AC Circuits: Phasor representation of sinusoidal quantities, Trigonometric,	
	Rectangular, Polar and complex forms.	
2	Analysis of simple AC circuits: Purely resistive, inductive & capacitive	11
	circuits; Inductive and capacitive reactance, concept of impedance - numerical problems.	
	RL, RC and RLC series circuits- power factor, active, reactive and apparent	
	power. Simple numerical problems.	
	Three phase AC systems: Generation of three phase voltages, advantages of	
	three phase systems, star and delta connections (balanced only), relation	
	between line and phase voltages, line and	
	phase currents- numerical problems	
	Introduction to Electronic devices:	
2	Passive and active components in electronics	10
3	i assive and active components in electronics	13
	Working of PN junction diode, V-I characteristics of PN Junction diode	
	Zener diode and avalanche breakdown. Basics of Zener voltage regulator	

	Block diagram of DC power supply, circuit and working of half wave, full	
	wave and bridge rectifiers, ripple factor (with and without capacitor filters)	
	Construction, working and V-I Characteristics of BJT, Input output	
	characteristics of CE configuration, Comparison of CE, CB and CC	
	configurations	
	Concept of biasing and load line Transistor as a switch, Transistor as an	
	amplifier (Circuit Diagram and working)	
	RC coupled amplifier - Circuit diagram and frequency response Introduction	
	to FET, Construction and working of N-channel and P- Channel MOSFETs	
	Modern Electronics and its applications:	
	General block diagram of a Communication system, Block diagram of	
	Fiber optic Communication system	
	Concept of AM and FM (No derivation required), Block diagram of AM and	
	FM super-heterodyne receiver	
	Basic concepts of Wired and Wireless communication, Block diagram	
	of GSM	
4	Comparison of 3G, 4G, 5G and 6G communication technologies Block	9
	diagrams of Electronic instrumentation system, Digital Multimeter,	
	Function generator	
	Introduction to CRO and Lissajous patterns	
	Applications of modern electronics – IoT based smart homes,	
	healthcare and agriculture (Case study only)	
L		

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to

	Bloom's Knowledge Level (KL)				
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC	K2			
COI	electric circuits				
CO2	CO2 Classify series and parallel magnetic circuits				
CO3	Understand three phase AC systems	K2			
CO4	Describe the fundamental concepts of electronic components and devices	K2			
CO5	Outline the principles of communication systems	K2			
CO6	Identify various applications of modern electronics in the contemporary world	K2			

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2											2
CO3	3	2										2
CO4	2	1										2
CO5	2											2
CO6	3		1			3	1					2

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019				
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010				
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018				
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020				
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015				
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017				
7	Electronic Communication SYstems	Kennedy and Davis	McGraw Hill	6/e 2017				

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008			

SEMESTER S1/S2

INTRODUCTION TO MECHANICAL ENGINEERING & CIVIL ENGINEERING

Course Code	GCEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4-0-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand thermodynamic cycles and working of IC engines.
- 2. Understand the refrigeration cycles and psychrometric concepts.
- 3. Understand the relevance of civil engineering and its various disciplines.
- 4. Describe the relevance of various building codes and types of buildings as per NBC.
- **5.** Understand different building components and building materials.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	General introduction to Mechanical Engineering: Thermodynamic cycles -Carnot Cycle -Derivation of efficiency (problems on efficiency) Otto, Diesel cycles (no derivation of efficiency and problems). IC Engines: CI & SI Engines, working of 2-Stroke & 4-Stroke engines. Listing the parts of IC Engines. Concept of CRDI, MPFI and hybrid engines. Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Psychrometric chart, Cooling and dehumidification, Layout of central air conditioning systems.	9

		D.100
	Classification of pumps, Description about working with sketches of:	
	Reciprocating pump, Centrifugal pump. Classification of Hydraulic	
	Turbines.	
	Different type of gears and its applications (spur, helical, bevel, worm	
	and worm wheel), List types of clutches and their use, Bearings and	
2	their classification (Journal bearing and ball bearing)	
	their classification (Journal bearing and bair bearing)	9
	Manufacturing Process: Sand Casting, Forging, Rolling, Extrusion.	
	Metal Joining Processes: List types of welding, Description with	
	sketches of Arc Welding, SMAW, Soldering and Brazing and their	
	applications.	
	Machining processes: Description and operations performed on	
	Lathe, Drilling machine, Milling machine, CNC machine, 3D	
	printing.	
	General Introduction to Civil Engineering: Relevance of Civil	
	Engineering in the overall infrastructural development of the country.	
	Brief introduction to major disciplines of Civil Engineering like	
	Structural Engineering, Geo-technical Engineering, Transportation	
	Engineering, Water Resources Engineering and Environmental	
	Engineering.	
3	Introduction to buildings: Types of buildings according to	9
	character of occupancy as per NBC, Load bearing and non-load	
	bearing building structures, components of a residential building and	
	their functions (conceptonly).	
	Selection of site for a residential building.	
	Building Area Definitions: Built up area, Plinth area, Floor area,	
	Carpet area and Floor area ratio of a building as per KBR.	
	Building rules and regulations: Relevance of NBC, KBR &	
	CRZ norms (brief discussion of relevance only).	
	Conventional construction materials: Brick, stone, sand, cement	
	and timber- Classifications, Qualities, Tests and Uses of construction	
4	materials. Cement concrete: Constituent materials, properties and	
_	types.	9
L		

Tests on fresh and hardened concrete - slump test, cube	
compressivestrength as per IS Codes.	
Steel: Structural steel sections and steel reinforcements – types and	
uses.	
Soil-Origin of soil-weathering of rocks, types of weathering	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the relevance of mechanical engineering and its	1/2
	various disciplines. Learn the applications of thermodynamics through IC engines and	K2
CO2	refrigeration systems.	К2
CO3	Understand the various manufacturing processes adapted by	
C03	mechanical engineers.	K2
CO4	Understand the relevance of civil engineering and its various	
CO4	disciplines.	K2
CO5	Describe the relevance of various building codes and types of	
CO5	buildings as per NBC	K2
CO6	Understand different building components and building materials.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3											2
CO4	3											
CO5	3							2				2
CO6	3											2

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Basic Mechanical Engineering	Pravin Kumar	Pearson Education	1 st Edition,2013	
2	A Textbook of Basic MechanicalEngineering	R.K. Rajput	Laxmi Publications	3 rd Edition,2017	
3	Elements of Mechanical Engineering	K.P. Roy, S.K. Hajra Choudhury, A.K. Hajra Choudhury	Media Promoters & Publishers Pvt. Ltd.	Revised Edition, 2012	
4	Fundamentals of Mechanical Engineering	G.S. Sawhney	PHI Learning Pvt. Ltd.	1 st Edition,2013	
5	Essentials of Civil Engineering	Dalal K R	Charotar Publishing house	1 st Edition 2012	
6	Engineering Materials(Material Science)	Rangwala S C	Charotar PublishingHouse Pvt Limited	43 rd Edition2019	
7	Building Materials	Duggal S K	New Age International	5 th Edition2019	

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi and M. Abul Masrur	John Wiley & Sons	2nd Edition, 2017				
2	Automotive Engineering Fundamentals	Richard Stone and Jeffrey K. Ball	SAE International	1 st Edition, 2004				
3	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing	Ian Gibson, David W. Rosen, and Brent Stucker	Springer	2 nd Edition, 2015				
4	Heating, Ventilating, and AirConditioning Analysis and Design	Faye C. McQuiston, Jerald D. Parker, and Jeffrey D. Spitler	John Wiley & Sons	6 th Edition, 2005				
5	Materials for Civil and Construction Engineering	Mamlouk, M.S.,and Zaniewski, J.P	Pearson Publishers	4 th Edition, 2017				
6	Building Construction	Rangwala, S.C and Dalal, KB	Charotar Publishing house	34 th Edition 2022				
7	Construction Technology Vol.I to IV	Chudley, R	Longman group,England Course Plan	2 nd Edition 2014				
8	Building Construction Volumes1to4	Mckay, W.B.and Mckay, J.K	Pearson India Education Services	5 th Edition				
9	Engineering Geology	Duggal S. K., Pandey H.K. and Rawat N,	Mcgraw Hill Education, New Delhi	1 st Edition 2017				
10	Latest Building codes and a	l related rules and regulations						

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/112/105/112105123/ https://nptel.ac.in/courses/112/106/112106133/						
	https://nptel.ac.in/courses/112/105/112105129/						
2	https://nptel.ac.in/courses/112/105/112105171/ https://nptel.ac.in/courses/112/105/112105268/ https://archive.nptel.ac.in/courses/112/107/112107145						
3	https://archive.nptel.ac.in/courses/105/106/105106201/						
4	https://archive.nptel.ac.in/courses/105/106/105106206/						

SEMESTER S1 ALGORITHMIC THINKING WITH PYTHON

Course Code	UCEST105	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:0:2:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide students with a thorough understanding of algorithmic thinking and its practical applications in solving real-world problems.
- **2.** To explore various algorithmic paradigms, including brute force, divide-and-conquer, dynamic programming, and heuristics, in addressing and solving complex problems.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	PROBLEM-SOLVING STRATEGIES:- Problem-solving strategies defined, Importance of understanding multiple problem-solving strategies, Trial and Error, Heuristics, Means- Ends Analysis, and Backtracking (Working backward). THE PROBLEM-SOLVING PROCESS:- Computer as a model of computation, Understanding the problem, Formulating a model, Developing an algorithm, Writing the program, Testing the program, and Evaluating the solution.	7

	ESSENTIALS OF PYTHON PROGRAMMING:- Creating and using	
	variables in Python, Numeric and String data types in Python, Using the math	
	module, Using the Python Standard Library for handling basic I/O -	
	print, input, Python operators and their	
	precedence.	
	ALGORITHM AND PSEUDOCODE REPRESENTATION:- Meaning and	
	Definition of Pseudocode, Reasons for using pseudocode, The main constructs	
	of pseudocode - Sequencing, selection (if-else structure, case structure) and	
	repetition (for, while, repeat- until loops), Sample problems*	
	FLOWCHARTS** :- Symbols used in creating a Flowchart - start and end,	
	arithmetic calculations, input/output operation, decision (selection), module	
	name (call), for loop (Hexagon), flow-lines, on-page connector, off-page	
	connector.	
	connector.	0
2	* - Evaluate an expression, $d=a+b*c$, find simple interest, determine the larger	9
	of two numbers, determine the smallest of three numbers, determine the grade	
	earned by a student based on KTU grade scale (using if-else and case	
	structures), print the numbers from 1 to 50 in descending order, find the sum	
	of n numbers input by the user (using all the three loop variants), factorial of	
	a number, largest of n numbers (Not to be limited to these exercises. More	
	can be worked out if time permits).	
	** Only for visualizing the control flow of Algorithms. The use of tools like	
	RAPTOR (https://raptor.martincarlisle.com/) is suggested. Flowcharts for	
	the sample problems listed earlier may be discussed	
	ine sample provients usica caraci may ve alscassea	

	SELECTION AND ITERATION USING PYTHON:- if-else, elif, for loop, range, while loop.	
	Sequence data types in Python - list, tuple, set, strings, dictionary, Creating and using Arrays in Python (using Numpy library).	
3	DECOMPOSITION AND MODULARISATION*:- Problem decomposition as a strategy for solving complex problems, Modularisation, Motivation for modularisation, Defining and using functions in Python, Functions with multiple return values	10

RECURSION:- Recursion Defined, Reasons for using Recursion, The Call Stack, Recursion and the Stack, Avoiding Circularity in Recursion, Sample problems - Finding the **n**th Fibonacci number, greatest common divisor of two positive integers, the

factorial of a positive integer, adding two positive integers, the sum of digits of a positive number **.

^{*} The idea should be introduced and demonstrated using Merge sort, the problem of returning the top three integers from a list of n>=3 integers as examples. (Not to be limited to these two exercises. More can be worked out if time permits).

^{**} Not to be limited to these exercises. More can be worked out if time permits.

		B.Tech 202
	COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING(Introductory diagrammatic/algorithmic explanations only. Analysis not required):-	
	Brute-force Approach -	
	- Example: Padlock, Password guessing	
	Divide-and-conquer Approach -	
	- Example: The Merge Sort Algorithm	
	- Advantages of Divide and Conquer Approach	
	- Disadvantages of Divide and	
	Conquer Approach Dynamic Programming	
	Approach	
4	- Example: Fibonacci series	
7	- Recursion vs Dynamic	10
	Programming Greedy Algorithm	
	Approach	
	- Example: Given an array of positive integers each indicating the	
	completion time for a task, find the maximum number of tasks that can	
	be completed in the limited amount of time that you have.	
	- Motivations for the Greedy Approach	_

- Characteristics of the Greedy Algorithm
- Greedy Algorithms vs Dynamic

Programming Randomized Approach

- Example 1: A company selling jeans gives a coupon for each pair of jeans. There are n different coupons. Collecting **n** different coupons would give you free jeans. How many jeans do you expect to buy before getting a free one?

Example 2: **n** people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty and returns the **n** hats randomly back to each person. What is the expected number of people who get back their hats?

-Motivations for the Randomized Approach

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment (Accurate Execution of Programming Tasks)	Internal Examination-1 (Written Examination)	Internal Examination- 2 (Written Examination)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Utilize computing as a model for solving real-world problems.	К2			
CO2	Articulate a problem before attempting to solve it and prepare a clear and accurate model to represent the problem.	К3			
CO3	Utilize effective algorithms to solve the formulated models and translate algorithms into executable programs.	К3			
CO4	Interpret the problem-solving strategies, a systematic approach to solving computational problems, and essential Python programming skills	К2			

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Creative

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Problem solving & programming concepts	Maureen Sprankle, Jim Hubbard	Pearson	2012
2	How to Solve It: A New Aspect of Mathematical Method	George Pólya	Princeton University Press	2015
3	Creative Problem Solving: An Introduction	Donald Treffinger., Scott Isaksen, Brian Stead- Doval	Prufrock Press	2005
4	Psychology (Sec Problem Solving.)	Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., & Perlmutter, M	H5P Edition	2021
5	Computer Arithmetic Algorithms	Koren, Israel	AK Peters/CRC Press	2018
6	Introduction to Computation and Programming using Python	Guttag John V	РНІ	2/e., 2016
7	Python for Everyone	Cay S. Horstmann, Rance D. Necaise	Wiley	3/e, 2024
8	Computational Thinking: A Primer for Programmers and Data Scientists	G Venkatesh Madhavan Mukund	Mylspot Education Services Pvt Ltd	2020

	Video Links (NPTEL, SWAYAM)						
Module No.	Module No. Link ID						
1	https://opentextbc.ca/h5ppsychology/chapter/problem-solving/						
2	https://onlinecourses.nptel.ac.in/noc21_cs32/preview						

1. Continuous Assessment (5 Marks)

Accurate Execution of Programming Tasks

- Correctness and completeness of the program
- Efficient use of programming constructs
- Handling of errors
- Proper testing and debugging

2. Evaluation Pattern for Lab Examination (10 Marks)

1. Algorithm (2 Marks)

Algorithm Development: Correctness and efficiency of the algorithm related to the question.

2. Programming (3 Marks)

Execution: Accurate execution of the programming task.

3. Result (3 Marks)

Accuracy of Results: Precision and correctness of the obtained results.

4. Viva Voce (2 Marks)

Proficiency in answering questions related to theoretical and practical aspects of the subject.

Sample Classroom Exercises:

- 1. Identify ill-defined problem and well-defined problems
- 2. How do you differentiate the methods for solving algorithmic problems: introspection, simulation, computer modelling, and experimentation?
- Use cases for Trial and error, Algorithm, Heuristic and Means-ends analysis can be applied in proffering solution to problems

- 4. Use a diagram to describe the application of Tower of Hanoi in choosing and analysing an action at a series of smaller steps to move closer to the goal
- 5. What effect will be generated if the stage that involves program writing is not observed in the problem-solving process?
- 6. What effect will be generated if the stage that involves program writing is not observed in the problem-solving process?
- 7. Evaluate different algorithms based on their efficiency by counting the number of steps.
- 8. Recursive function that takes a number and returns the sum of all the numbers from zero to that number.
- 9. Recursive function that takes a number as an input and returns the factorial of that number.
- 10. Recursive function that takes a number 'n' and returns the nth number of the Fibonacci number.
- 11. Recursive function that takes an array of numbers as an input and returns the product of all the numbers in the list.

LAB Experiments:

- 1. Demonstrate about Basics of Python Programming
- 2. Demonstrate about fundamental Data types in Python Programming. (i.e., int, float, complex, bool and string types)
- 3. Demonstrate different Arithmetic Operations on numbers in Python.
- 4. Create, concatenate, and print a string and access a sub-string from a given string.
- 5. Familiarize time and date in various formats (Eg. "Sun May 29 02:26:23 IST 2017")
- 6. Write a program to create, append, and remove lists in Python using numPy.
- 7. Programs to find the largest of three numbers.
- 8. Convert temperatures to and from Celsius, and Fahrenheit. [Formula: c/5 = f-32/9]
- 9. Program to construct the stars (*) pattern, using a nested for loop
- 10. Program that prints prime numbers less than 20.
- 11. Program to find the factorial of a number using Recursion.
- 12. Recursive function to add two positive numbers.
- 13. Recursive function to multiply two positive numbers
- 14. Recursive function to the greatest common divisor of two positive numbers.
- 15. Program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides). Implement using functions.

- 16. Program to define a module to find Fibonacci Numbers and import the module to another program.
- 17. Program to define a module and import a specific function in that module to another program.
- 18. Program to check whether the given number is a valid mobile number or not using functions?

Rules:

- 1. Every number should contain exactly 10 digits.
- 2. The first digit should be 7 or 8 or 9

SEMESTER S1

FOUNDATIONS OF COMPUTING: FROM HARDWARE ESSENTIALS TO WEB DESIGN

Course Code	GXEST106	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

CourseCourse Objectives:

- 1. To introduce the students to the fundamental building blocks of an IT infrastructure including the computing systems, its peripherals, Operating Systems and Networking.
- 2. To make the learners capable of developing and deploying simple and dynamic websites.

SYLLABUS

Module No.	Syllabus Description				
1	Computer Hardware – CPU, Memory - Memory hierarchy: registers, cache, RAM, virtual memory, Motherboard - Computer Peripherals - I/O devices, Storage devices- HDDs, SSDs, optical drives, I/O communication and device management, Interface cards – Buses – Firmware - Boot process	9			
2	Binary representation of data and numbers, Integer Representation, Data storage units - bits, bytes, kilobytes, etc., ASCII and Unicode, CPU Architecture and Instruction Set: Basic CPU architecture - ALU, registers, control unit, Instruction format and assembly language (basics only) Fetch-execute cycle and instruction execution.	9			

3	Computer System Software - Operating Systems, Basic commands in Linux / Windows, Shell scripting (bash). Computer Communications – LAN, MAN, WAN, Client/Server networks, Peer-to-Peer networks, Topologies. Basics of IP addresses, DHCP, NAT, Network Security (Desktop & Perimeter), DNS, VPN, Routers, Client-Server, Internet, WWW, Web servers.	9
4	Web Design (Basics of HTML, CSS, and JavaScript) – Understanding the web content delivery, Understanding HTML and XHTML Connections, Understanding Cascading Style Sheets, Understanding JavaScript	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the fundamental components and the working of an IT environment.	K2
CO2	Explain the data representations, CPU architectures, and the basic functioning of a computer.	К2
CO3	Explain the operating systems, computer network architecture, and necessary protocols used.	К2
CO4	Develop simple interactive web pages and validate the inputs.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3										3
CO3	3	3										3
CO4	3	3			3							3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Invitation to Computer Science	G.Michael Schneider, Judith Gersting	Cengage	Ed 2, 2020		
2	The Architecture of Computer Hardware, Systems Software, & Networking: An Information Technology Approach	Irv Englander	Wiley	Ed 5, 2014		
3	HTML, CSS, and JavaScript All in One, Sams Teach Yourself	Julie C. Meloni Jennifer Kyrnin	Pearson	Ed 1, 2020		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	The Elements of Computing Systems, second edition: Building a Modern Computer from First Principles	Noam Nisan and Shimon Schocken	The MIT Press	2nd Edn, 2021		
2	Peter Norton's Introduction to Computers	Peter Notron	McGrawHill	6th Edn, 2010		
3	Web Design with HTML, CSS, JavaScript and Jquery	Jon Duckett	Wiley	First Ed., 2014		

	Video Links (NPTEL, SWAYAM)			
Module No. Link ID				
1	https://www.nand2tetris.org/			
2	https://onlinecourses.swayam2.ac.in/nou20_cs05/preview			

SEMESTER S1/S2

BASIC ELECTRICAL AND ELECTRONICS

ENGINEERING WORKSHOP

Course Code	GXESL107	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Course Objectives:

- 1. To create awareness and familiarity with electrical wiring and safety measures to be taken.
- 2. To Identify various electronic components and to operate various measuring instruments
- 3. Learn to setup simple electronic circuits on breadboard and PCB

Expt. No.	Experiments
Electrical V	Vorkshop (Minimum of 7 Experiments to be done)
	a) Demonstrate the precautionary steps adopted in case of Electrical shocks.
1	b) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and
	MCCB, familiarize the ratings.
	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a 6A plug
2	socket with individual control.
3	Wiring of light/fan circuit using two-way switches. (Staircase wiring)
4	Wiring of fluorescent lamp and a power plug (16 A) socket with a control switch.
5	Wiring of power distribution arrangement using single phase MCB distribution board with
	ELCB, main switch and Energy meter.
6	Familiarisation of step up and step-down transformers, (use low voltage transformers)
	Measurement and representation of voltage and waveform to scale in graph sheet with the
	help of CRO
7	Familiarisation of rheostats, measurement of potential across resistance elements and

7	Familiarisation of rheostats, measurement of potential across resistance elements and
	introducing the concept of relative potential using a DC circuit.

8

a) Identify battery specifications using different types of batteries. (Lead acid, Li Ion,NiCd etc.)
b) Familiarize different types of earthing (Pipe, Plate Earthing, Mat Schemes) and ground enhancing materials (GEM).

	ELECTRONICS WORKSHOP (Minimum of 7 Experiments to be done)
	Familiarization/Identification of electronic components with specification (Functionality, type,
1	size, colour coding, package, symbol and cost of -Active, Passive, Electrical, Electronic, Electro-
1	mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays,
	Crystals, Displays, Fasteners, Heat sink etc.)
2	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data sheets of discrete components and IC's
	Familiarization/Application of testing instruments and commonly used tools Multimeter,
3	Function generator, Power supply, CRO, DSO.
	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers,
	Crimping tool, Hot air soldering and de-soldering station
4	Testing of electronic components using multimeter - Resistor, Capacitor, Diode, Transistor
4	and JFET.
_	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processingmethods.
5	Design and fabrication of a single sided PCB for a simple circuit.
	Inter-connection methods and soldering practice.
6	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety precautions.
	Soldering practice in connectors and general-purpose PCB, Crimping.
	Assembling of electronic circuit/system on general purpose PCB, test and show the
	functioning (Any two)-
7	Fixed voltage power supply with transformer
	Rectifier diode
	Capacitor filter
	 Zener/IC regulator Square wave generation using IC 555 timer in IC base.
8	Assembling of electronic circuits using SMT (Surface Mount Technology) stations.
9	Introduction to EDA tools (such as KiCad or XCircuit)
y	Introduction to EDA tools (such as Kicau of Acticuit)

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum
 is that the student must score a minimum of 50% overall, combining marks from both Continuous
 Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum
 requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome					
CO1	Demonstrate safety measures against electrical shocks	K2				
CO2	Familiarise with transformers, rheostats, batteries and earthing schemes	K2				
CO3	Illustrate the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	К3				
CO4	Identify various electronic components	K2				
CO5	Operate various measuring instruments	К3				
CO6	Apply the design procedure of simple electronic circuits on breadboard and PCB	К3				
CO7	Build the ability to work in a team with good interpersonal skills	К3				

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2	1					2	1					2
CO3	2					1						2
CO4	3					2						3
CO5	3				3	2			2			3
CO6	3		3	1	3	2	1		2			3
CO7									3	2		2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Electrical Design Estimating and Costing K B Raina and S KBhattacharya New Age International Publishers		2/e 2024							
2	Electrical Systems Design	Electrical Systems Design M K Giridharan I K International Publishing House Pvt. Ltd		3/e 2022						
3	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019						
4	Basic Electronics and Linear Circuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Mc Graw Hill	2/e 2017						

Continuous Assessment with equal weightage for both specializations (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

2. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

3. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voice session.

Evaluation Pattern for End Semester Examination with equal weightage in both specializations (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- · Analysis and Interpretation: Validity of inferences drawn from the experiment or quality

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

· Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1 /S2
BASIC MECHANICAL AND CIVIL ENGINEERING LAB

Course Code	GCESL107	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-2-0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To enable the student to familiarize various tools, measuring devices, practices and different methods employed in the industry.
- **2.** To enable the students to apply this experience while developing product/project for the benefit of society.

Expt.	Experiments							
No.	(Minimum 12 Exercises)							
	General: Introduction to workshop practice, Safety precautions, Shop floor ethics,							
	and Basic First Aid knowledge. Study of mechanical and measurement tools,							
	components and their applications: (a) Tools: screw drivers, spanners, Allen keys,							
1	cutting pliers etc. and accessories (b) bearings, seals, O-rings, circlips, keys							
	etc.(c)Vernier Calipers, Height							
	Gauge, Depth Gauge, Micrometers, Bevel Protractor etc.							
	Carpentry: Understanding carpentry tools and knowledge of at least one model							
2	1. T – Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints							
	Foundry: Understanding of foundry tools and knowledge of at least one model							
3	1. Bench Moulding 2. Floor Moulding 3. Core making 4. Pattern making							
	Sheet Metal: Understanding sheet metal working tools and knowledge of at							
	least one model							
4	1. Cylindrical shape 2. Conical shape 3. Prismatic shaped job from sheet metal							

	Fitting: Understanding the tools used for fitting and knowledge of at least one
5	model
	1. Square Joint 2. V- Joint 3. Male and female fitting

	Plumbing: - Understanding plumbing tools and pipe joints, along with								
6	practicing one exercise on joining pipes using a minimum of three types of pipe								
	joints								
7	Smithy: - Understanding the tools used in smithy. Demonstrating the forge-								
	ability of different materials (MS, Al, alloy steel and cast steels) in both cold								
	and hot states. Observing the qualitative difference in the hardness of these								
	materials. One exercise on smithy (Square prism).								
	Welding: Understanding welding equipment and practicing at least one welding								
8	technique, such as making joints using electric arc welding. Bead formation in								
	horizontal, vertical-and overhead positions								
	Assembly: Demonstration only Dissembling and assembling of 1. Cylinder and piston assembly 2. Tail stock assembly 3. Bicycle 4. Pump or								
9									
	any other machine								
	Use of proper Personal Protective Equipments. Measurements using Tape, Ruler,								
10	Vernier calipers, screw gauge								
11	Measuring the area of a plot with an irregular boundary using a chain and cross								
	staff								
12	Measuring the area of a building using Distomat								
13	Finding the level difference between two points using dumpy level								
14	Onsite quality assessment of brick, and cement								

num
imum
truct the
s and
elling.
1

Conduct a market study to understand the types, prices, and general specifications of at least three materials available in the market (such as bricks, cement, aggregates, steel, plumbing items, fixtures, welding rods, fasteners etc.).

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Attendance Preparation/Pre-Lab Work, experiments, Viva and Timelycompletion of Lab Reports / Record (Continuous Assessment)	
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum is that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Identify workshop operations and instruments in accordance with the material and objects.	К3
CO2	Understand appropriate tools and instruments with respect to the workshop specializations.	K2
CO3	Apply various tools, measuring devices, practices and different methods employed in the industry.	К3
CO4	Examine the quality of common materials used in the industry.	К3
CO5	Conduct market study of various engineering materials and consumables available in the market.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3									2		2
CO2	3									2		2
CO3	3				2					2		3
CO4	3									2		3
CO5	3								2	3		3

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mechanical Workshop Practice	K C John	PHI Learning	Edition 2 2010			
2	Engineering Materials	S C Rangwala	Charotar Publishing House Pvt Limited	Edition 43 2019			
3	Building Materials	S K Duggal	New Age International	Edition 6 2025			
4	Indian Practical Civil EngineeringHandbook	Khanna P.N,	UBS Publishers Distributers (P) Ltd.	Year 2012			
5	Building Construction	Arora S.P and Bindra S.P	Dhanpat Rai Publications	Edition 5 Year 2022			

Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Elements of Workshop Technology Vol-1- ManufacturingProcesses	S K Hajra Choudhury A K Hajra Choudhury Nirjhar Roy	MPP Media Promoters and Publishers	2008			

Video Links (NPTEL, SWAYAM)					
Link ID					
https://archive.nptel.ac.in/courses/105/106/105106206/					
https://archive.nptel.ac.in/courses/105/106/105106201/					
https://archive.nptel.ac.in/courses/105/104/105104101/					
https://archive.nptel.ac.in/courses/117/106/117106108/					

Continuous Assessment (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

4. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER -S1 LIFE SKILLS AND PROFESSIONAL COMMUNICATION

Course Code	UCHUT128	CIE Marks	100
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	0
Credits	0	Exam Hours	-
Prerequisites (if any)	None	Course Type	Activity-based learning

Course objectives:

- 1. To foster self-awareness and personal growth, enhance communication and interpersonal connection skills, promote effective participation in groups and teams, develop critical thinking, problem-solving, and decision-making skills, and cultivate the ability to exercise emotional intelligence.
- **2.** To equip students with the necessary skills to listen, read, write & speak, to comprehend and successfully convey any idea, technical or otherwise.
- **3.** To equip students to build their profile in line with the professional requirements and standards.

Continuous Internal Evaluation Marks (CIE):

- Continuous internal evaluation is based on the individual and group activities as detailed in the activity table given below.
- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. They

should use online collaboration tools for group activities, report/presentation making and work management.

- Activities are to be distributed between 3 class hours (2L) and 3 Self-study hours.
- Marks given against each activity should be awarded fully if the students successfully complete the activity.
- Students should maintain a portfolio file with all the reports and other textual materials generated

- from the activities. Students should also keep a journal related to the activities undertaken.
- Portfolio and journal are mandatory requirements for passing the course, in addition to the minimum marks required.
- The portfolio and journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through the HMC courses and Mini project course.
- Self-reflection questionnaire shall be given at the beginning of the semester, in between and at the end of the semester based on the guidelines in the manual of the course.

Table 1: Activity Table

Sl. No.	Activity	Class room (L)/ Self Study (SS)	Week of completion	Group / Individual (G/I)	Marks	Skills	СО
1.1	Group formation and self-introduction among the group members	L	1	G	-	• Connecting with	
1.2	Familiarizing the activities and preparation of the time plan for the activities	L	1	G	-	group members Time management - Gantt Chart	
1.3	Preparation of Gant chart based on the time plan	SS	1	G	2		
2.1	Take an online personality development test, self reflect and report	SS	1	I	2	• Self-awareness Writing	CO1
2.2	Role-storming exercise 1: Students assume 2 different roles given below and write about their Strengths, Areas for improvement, Concerns, Areas in which he/she hesitates to take advice, Goals/Expectations,	L	1	I	2	Goal setting - Identification of skills and setting goal Self-awareness Discussion in groups Group work- Compiling of ideas Mind mapping	CO1

	from the point of view of the following						
	assumed roles						
	i) their parent/guardian/mentor						
	ii) their friend/sibling/cousin						
2.3	Role-storming exercise 2:						
	Students assume the role of their teacher						
	and write about the	SS	1	I	2		
	Skills required as a B.Tech graduate						
	• Attitudes, habits, approaches required						CO1
	and activities to be practised during their						
	B.Tech years, in order to achieve the set						
	Goals						
2.4	Discuss the skills identified through						
	rolestorming excercise by each one	L	1	G	2		
	within their own group and improvise						CO1
	the list of skills						
2.5	Prepare a mind map based on the role-	~~			_		
	storming exercise and exhibit/present it	SS	2	G	2		CO1
	in class						
3	Prepare a presentation on instances of	т	2 to 4	Ţ	2		
	empathy they have observed in their	L	2 10 4	I	2	• Empathy	CO2
	own life or in other's life						
4.1	Each student connects and networks					Workplace	
	with a minimum of 3 professionals	SS	3	I	2	awareness • Listening	
	from industry/public sector					Communication	
	organizations/other agencies/NGOs					- interacting	
	/academia (atleast 1 through LinkedIn)					with people • Networking	
4.2	Interact with them to understand their					through various	
	workplace details including					media including	
	• workplace skills required					LinkedIn • Discussion in	
	• their work experience	SS	3	I	4	groups	
	• activities they have done to enhance					• Report	CO2
	thair amplayability during thair D. Taab					preparation	
1	their employability during their B.Tech					• Creativity	
	years					• Creativity	
						• Creativity Goal setting - Preparation of	

	Prepare a documentation of this					action plan	
4.3	Discuss the different workplace details & work readiness activities assimilated by each through the interactions within their group and compile the inputs collected by the individuals Prepare the Minutes of the discussions	SS	3	G	2		CO2
4.4	Report preparation based on the discussions	SS	4	G	3		CO4
4.5	Perform a role-play based on the workplace dynamics assimilated through interactions and group discussions	L	5	G	4		CO3
4.6	Identify their own goal and prepare an action plan for their undergraduate journey to achieve the goal	SS	5	I	2		CO1
5.1	Select a real-life problem that requires a technical solution and list the study materials needed	L	6	G	2		CO3
5.2	Listen to TED talks & video lectures from renowned Universities related to the problem and prepare a one-page summary (Each group member should select a different resource)	SS	6	I	2		CO4
5.3	Use any online tech forum to gather ideas for solving the problem chosen	SS	6	G	2	-	CO5
5.4	Arrive at a possible solution using six thinking hat exercise	L	7	G	3		СОЗ
5.5	Prepare a report based on the problem- solving experience	SS	7	G	2		CO4
				<u> </u>			
6.1	Linkedin profile creation	SS	1	I	2	_	CO6
6.2	Resume preparation	SS	8	I	2	Profile-building	CO6
6.3	Self-introduction video	SS	8	I	3	Email: 1	CO6
7	Prepare a presentation on instances of demonstration of emotional intelligence	SS	9	I	2	Emotional intelligence	CO2

8	Prepare a short video presentation on					Diversity	
	diversity aspects observed in our	SS	10	G	3	Diversity	CO2,
	society (3 to 5 minutes)						CO5
						T	
9	Take online Interview skills	SS	10	I	2	• Interview skills	
	development sessions like robotic		-				CO6
	interviews; self-reflect and report						
10	Take an online listening test, self-	SS	11	I	2	Listening skills	CO6
	reflect and report						C00
11.1	Activities to improve English	L	8	I/G	4		CO4
	vocabulary of students						CO4
11.2	Activities to help students identify	L	9	I/G	2		
	errors in English language usage						CO4
11.3	Activity to help students identify						
	commonly mispelled words, commonly	L	10	I/G	2		
	mispronounced words and confusing					• English vocabulary	CO4
	Words					• English language	
11.4	Write a self-reflection report on the					skills • Writing	
	improvement in English language	SS	12	I	2	• Presentation	CO4
	communication through this course					• Group work	CO4
11.5	Presentation by groups on the					• Self-reflection	
	experience of using online						
	collaboration tools in various group	L	11 to 12	G	2		
	activities and time management						CO4, CO5
	experience as per the Gantt chart						003
10.1	prepared						
12.1	Each group prepares video content for					Audio-visual presentations	
	podcasts on innovative technological			_		creations with the	
	interventions/research work tried out in	SS	12	G	4	use of technology tools	CO2,
	Kerala context by					• Effective use of	CO4,
	academicians/professionals/Govt.					social media	CO5
	agencies/research institutions/private					platformsProfile building	
	agencies/NGOs/other agencies					• Frome building	
12.2	Upload the video content to podcasting	SS	12	G	1		COT
	platforms or YouTube						CO5
12.3	Add the link of the podcast in their	SS	12	G	1	1	
	LinkedIn profile						CO5
		l	l .		1	_1	1

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to know & understand oneself, show confidence in one's potential & capabilities, set goals and develop plans to accomplish tasks	К5
CO2	Develop the ability to communicate and connect with others, participate in groups/teams, empathise, respect diversity, be responsible and understand the need to exercise emotional intelligence	K5
CO3	Develop thinking skills, problem-solving and decision-making skills	K5
CO4	Develop listening, reading, writing & speaking skills, ability to comprehend & successfully convey any idea, and ability to analyze, interpret & effectively summarize textual, audio & visual content	К6
CO5	Develop the ability to create effective presentations through audio-visual mediums with the use of technology tools and initiate effective use of social media platforms & tech forums for content delivery and discussions	К6
CO6	Initiate profile-building exercises in line with the professional requirements, and start networking with professionals/academicians	K 6

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1										1		3
CO2					1			3		3		3
CO3		1	1		1					1		1
CO4					1					1		2
CO5					1	1				1		2
CO6					1					1		

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Life Skills & Personality Development	Maithry Shinde et.al.	Cambridge University Press	First Edition, 2022
2	Emotional Intelligence: Why it can matter more than IQ	Daniel Goleman	Bloomsbury, Publishing PLC	25th Anniversary Edition December 2020
3	Think Faster, Talk Smarter: How to speak successfully when you are put on the spot	Matt Abrahams	Macmillan Business	September 2023
4	Deep Work: Rules for focused success in a distracted world	Cal Newport	PIATKUS	January 2016
5	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017
6	Interchange	Jack C. Richards, With Jonathan Hull, Susan Proctor	Cambridge publishers	5th Edition

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Life Skills for Engineers	Remesh S., Vishnu R.G.	Ridhima Publications	First Edition, 2016				
2	Soft Skills & Employability Skills	Sabina Pillai and Agna Fernandez	Cambridge University Press	First Edition, 2018				
3	Effective Technical Communication	Ashraf Rizvi	McGraw Hill Education	2nd Edition 2017				
4	English Grammar in Use	Raymond Murphy,	Cambridge University Press India PVT LTD	5th Edition 2023				
5	Guide to writing as an Engineer	David F. Beer and David McMurrey	John Willey. New York	2004				

SEMESTER 2

Electronics & Communication Engineering

SEMESTER S2

MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL SCIENCE - 2

Course Code	GYMAT201	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:1:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic knowledge in single variable calculus.	Course Type	Theory

Course Objectives:

1. To provide a comprehensive understanding of partial derivatives, multiple integrals, and the differentiation and integration of vector-valued functions, emphasizing their applications in engineering contexts.

Module No. Syllabus Description Con Ho
--

B.Tech 2025 -S1/S2

1	Limits and continuity, Partial derivatives, Partial derivatives of functions with two variables, Partial derivatives viewed as rate of change and slopes, Partial derivatives of functions with more than two variables, Higher order partial derivatives, Local Linear approximations, Chain rule, Implicit differentiation, Maxima and minima of functions of two variables - relative maxima and minima (Text 1: Relevant topics from sections 13.2, 13.3, 13.4, 13.5, 13.8)	9
---	--	---

2	Double integrals, Reversing the order of integration in double integrals, change of coordinates in double integrals (Cartesian to polar), Evaluating areas using Double integrals, Finding volumes using double integration, Triple integrals, Volume calculated as triple integral, Triple integral in	9
	Cartesian and cylindrical coordinates. (Text 1: Relevant topics from section 14.1, 14.2, 14.3, 14.5, 14.6)	
3	Vector valued function of single variable - derivative of vector valued function, Concept of scalar and vector fields, Gradient and its properties, Directional derivative, Divergent and curl, Line integrals of vector fields, Work done as line integral, Conservative vector field, independence of path, Potential function (results without proof). (Text 1: Relevant topics from section 12.1, 12.2, 13.6, 15.1, 15.2, 15.3)	9
4	Green's theorem (for simply connected domains, without proof) and applications to evaluating line integrals, finding areas using Greens theorem, Surface integrals over surfaces of the form $z = g(x, y)$, Flux integrals over surfaces of the form $z = g(x, y)$, Divergence theorem (without proof), Using Divergence theorem to find flux, Stokes theorem (without proof) (Text 1: Relevant topics from section 15.4, 15.5, 15.6, 15.7,15.8)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Compute the partial and total derivatives and maxima and minima of multivariable functions and to apply in engineering problems.	К3
CO2	Understand theoretical idea of multiple integrals and to apply them to find areas and volumes of geometrical shapes.	К3
СОЗ	Compute the derivatives and line integrals of vector functions and to learn their applications.	К3
CO4	Apply the concepts of surface and volume integrals and to learn their inter-relations and applications.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Calculus	H. Anton, I. Biven, S.Davis	Wiley	12 th edition, 2024		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Thomas' Calculus	Maurice D. Weir, Joel Hass, Christopher Heil, Przemyslaw Bogacki	Pearson	15 th edition, 2023			
2	Essential Calculus	J. Stewart	Cengage	2 nd edition, 2017			
3	Advanced Engineering Mathematics	Erwin Kreyszig	John Wiley & Sons	10 th edition, 2016			
4	Bird's Higher Engineering Mathematics	John Bird	Taylor & Francis	9 th edition, 2021			
5	Higher Engineering Mathematics	B. V. Ramana	McGraw-Hill Education	39 th edition, 2023			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://nptel.ac.in/courses/111107108				
2	https://nptel.ac.in/courses/111107108				
3	https://nptel.ac.in/courses/111107108				
4	https://nptel.ac.in/courses/111107108				

SEMESTER S1/S2

PHYSICS FOR ELECTRICAL SCIENCE

Course Code	GBPHT121	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:1:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory + Lab

Course Objectives:

- 1.To provide students with a solid background in the fundamentals of Physics and to impart this knowledge in Electrical Science disciplines.
- 2.To develop scientific attitudes and enable students to correlate Physics concepts with their core programs.
- 3.To equip students with practical knowledge that complements their theoretical studies and develop their ability to create practical applications and solutions in engineering based on their understanding of Physics.

Module No.	Syllabus Description	Contact Hours
1	Semiconductor Physics Intrinsic semiconductor, Derivation of density of electrons in conduction band and density of holes in valence band, Intrinsic carrier concentration, Variation of Intrinsic carrier concentration with temperature, Extrinsic semiconductor (qualitative) Formation of p-n junction, Fermi level in semiconductors-intrinsic and extrinsic, Energy band diagram of p-n junction - Qualitative description of charge flow across a p-n junction - Forward and reverse biased p-n junctions, Diode equation (Derivation), V-I Characteristics of p-n junction	9

	Semiconductor Devices		
	Semiconductor devices - Rectifiers- Full wave and Half wave, Zener		
	diode - V-I characteristics - Zener breakdown and Avalanche breakdown,		
2	Tunnel diode - V-I characteristics, Applications of Zener and Tunnel		
	diodes.		
	Photonic devices (qualitative) - Photo detectors (Junction and PIN		
	photodiodes), Applications, Solar cells- V-I Characteristics, Efficiency,		
	Stringing of Solar cells to solar panel, Light Emitting Diode, Applications		
	of LED		
	Superconductivity & Dielectrics		
	Super conductivity, Transition temperature, Critical field, Meissner effect,		
	Type I and Type II Super conductors, Applications of superconductors.		
_	Dielectric constant, Polarization, Permittivity- relative permittivity,		
3	Relation between polarization and dielectric constant, Types of Polarization,		
	Internal fields in liquids and solids, Clausius Mossotti		
	Relation, Dielectric loss(qualitative), Dielectric breakdown (qualitative)		
	Laser & Fiber Optics		
	Optical processes - Absorption, Spontaneous emission and stimulated		
	emission, Properties of laser, Principle of laser - conditions for sustained		
	lasing - Population inversion, Pumping, Metastable states, Basic		
	components of laser - Active medium- Optical resonant cavity,		
4	Construction and working of Ruby laser, Semiconductor Laser	9	
	(Qualitative), Applications of laser.		
	Optical fiber-Principle of propagation of light, Types of fibers-Step index		
	and Graded index fibers, Numerical aperture -Derivation, Applications of		
	optical fibers - Fiber optic communication system (block diagram)		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Explain the fundamentals of Semiconductor Physics.	K2			
CO2	Describe the behaviour of semiconductor materials in semiconductor devices.	K2			
CO3	Explain Superconductivity and basic theory of dielectrics	K2			
CO4	Apply the comprehended knowledge about laser and fibre optics in various engineering applications	К3			
CO5	Apply basic knowledge of principles and theories in physics to conduct experiments.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3											3
CO3	3											3
CO4	3	2										3
CO5	3	2			3				2			3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Concepts of Modern Physics	Arthur Beiser	Tata McGraw Hill Publications	6 th Edition, 2003				
2	Engineering Physics	H K Malik and A K Singh McGraw Hill		2 nd Edition, 2017				
3	A Textbook of Engineering Physics	MN Avadhanulu, P G Kshirsagar, TVS Arun murthy	S. Chand	11 th Edition, 2018				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Semiconductor Devices Fundamentals	Robert F Pierret	Pearson Education	1995		
2	Advanced Semiconductor Fundamental	Robert F Pierret	Pearson Education	2 nd Edition, 2002		
3	Solid State Electronic Devices	Ben G Streetman and Sanjay Kumar Banerjee	Pearson Education 6/e	2010		
4	Solid State Physics	S.O. Pillai	New age international publishers	10 th Edition, 2022		
5	Introduction to Solid State Physics	Charles Kittel	Wiley India Edition	2019		
6	Advanced Engineering Physics	Premlet B	Phasor Books	10 th Edition ,2017		
7	A Text Book of Engineering Physics	I. Dominic and. A. Nahari,	Owl Books Publishers	Revised Edition, 2016		

	Video Links (NPTEL, SWAYAM etc)						
Module No. Link ID							
1 https://nptel.ac.in/courses/108106181							
2	https://nptel.ac.in/courses/108108112						
3 https://nptel.ac.in/courses/115103108							
4	https://nptel.ac.in/courses/115102124						

3. Continuous Assessment (10 Marks)

v. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

vi. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

vii. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

viii. Viva Voce (3 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

4. Evaluation Pattern for Lab Examination (5 Marks)

4. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Setup and Execution: Proper setup and accurate execution of the experiment or programming task

5. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

6. Viva Voce (1 Marks)

 Proficiency in answering questions related to theoretical and practical aspects of the subject.

Experiment List Laboratory Experiments to be conducted in the virtual lab mode (Minimum 6 Experiments)

Experiment No.	Experiment
1	Diode characteristics
2	Zener diode- V-I characteristics
3 Tunnel diode –V-I characteristics	
4	Half wave rectifier
5	Full wave rectifier
6 Hall effect in semiconductors	
7 Determination of band gap energy of a semiconductor	
8 Characteristics of LED	
9	Solar Cell- V-I and Intensity Characteristics

10	Laser – Determination of wavelength using diffraction grating
11	Laser- To measure the wavelength using a millimetre scale as a grating
Compare the variation of current with potential difference, for a metal, filament and semiconductor diode.	
13	Determination of dielectric constant
14	CRO -Measurement of frequency and amplitude of wave forms
15	Photo diode- V-I Characteristics
16	Numerical aperture of optical fiber

SEMESTER S1/S2

CHEMISTRY FOR INFORMATION SCIENCE & ELECTRICAL SCIENCE

Course Code	GXCYT122	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:1:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory+ Lab

Course Objectives:

- **4.** To equip students with a comprehensive understanding of chemistry concepts that are relevant to engineering applications.
- **5.** To familiarize students with applied topics such as spectroscopy, electrochemistry, and instrumental methods.
- **6.** To raise awareness among students about environmental issues, including climate change, pollution, and waste management, and their impact on the quality of life.

Module No.	Syllabus Description				
	Electrochemistry and Corrosion Science				
	Electrochemical Cell- Electrode potential- Nernst equation for single				
	electrode and cell (Numerical problems)- Reference electrodes - SHE &				
	Calomel electrode -Construction and Working - Electrochemical series -				
	Applications - Glass Electrode & pH Measurement-Conductivity-				
1	Measurement using Digital conductivity meter. Li-ion battery & H ₂ -O ₂ fuel				
	cell (acid electrolyte only) construction and working.	9			
	Corrosion –Electrochemical corrosion mechanism (acidic & alkaline				
	medium) - Galvanic series - Corrosion control methods - Cathodic Protection				
	- Sacrificial anodic protection and impressed current cathodic protection –				
	Electroplating of copper - Electroless plating of copper.				

	Materials for Electronic Applications		
	Nanomaterials - Classification based on Dimension & Materials - Synthesis		
	- Sol gel & Chemical Reduction - Applications of nanomaterials - Carbon		
	Nanotubes, Fullerenes, Graphene & Carbon Quantum Dots – structure,		
	properties & application.		
	Polymers - Fire Retardant Polymers- Halogenated & Non-halogenated		
2	polymers (Examples only)- Conducting Polymers-Classification-		
	Polyaniline & Polypyrrole-synthesis, properties and applications.		
	Organic electronic materials and devices- construction, working and		
	applications of Organic Light Emitting Diode (OLED) & Dye-Sensitized		
	Solar Cells (DSSC)		
	Materials used in Quantum computing Technology, Super capacitors,		
	Spintronics		
	Molecular Spectroscopy and Analytical Techniques		
	Spectroscopy-Types of spectra- Molecular energy levels - Beer Lambert's		
	law - Numerical problems - Electronic Spectroscopy - Principle, Types of		
	electronic transitions -Role of conjugation in absorption maxima-		
	Instrumentation-Applications - Vibrational spectroscopy - Principle-		
3	Number of vibrational modes - Vibrational modes of CO_2 and H_2O -	9	
	Applications		
	Thermal Analysis: Dielectric Thermal Analysis (DETA) of Polymers-		
	Working and Application.		
	Electron Microscopic Techniques: SEM - Principle, instrumentation and		
	Applications.		
	Environmental Chemistry		
	Water characteristics - Hardness - Types of hardness- Temporary and		
	Permanent - Disadvantages of hard water -Degree of hardness (Numericals)		
4	Water softening methods-Ion exchange process- Principle, procedure and	0	
4	advantages. Reverse osmosis – principle, process and advantages. – Water	9	
	disinfection methods – chlorination-Break point chlorination, ozone and UV		
	irradiation. Dissolved oxygen (DO), BOD and COD- Definition &		
	Significance.		

Waste Management: Sewage water treatment- Primary, Secondary and
Tertiary - Flow diagram -Trickling filter and UASB process. E Waste,
Methods of disposal – recycle, recovery and reuse. Chemistry of climate
change- Greenhouse Gases- Ozone Depletion-Sustainable Development- an
introduction to Sustainable Development Goals.

Self-Study Topics (NOT TO BE INCLUDED FOR END SEMESTER EXAMINATION): Construction, working and applications of Lead acid battery, Nickel cadmium battery and Nickel metal hybrid battery.

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Continuous Assessment	Internal Examination-1 (Written)	Internal Examination-2 (Written)	Internal Examination- 3 (Lab Examination)	Total
5	10	10	10	5	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
	Explain the Basic Concepts of Electrochemistry and Corrosion to explore			
CO1	CO1 the possible applications in various engineering fields			
CO2	K2			
	Apply appropriate analytical techniques for the synthesis and			
CO3	CO3 characterization of various engineering materials.			
CO4	Outline various water treatment and waste management methods	K2		

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	3	3										2
CO3	3	3										2
CO4	3	3				2	3					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Chemistry	B. L. Tembe, Kamaluddin, M. S. Krishnan	NPTEL Web-book	2018			
2	Physical Chemistry	P. W. Atkins	Oxford University Press	International Edition- 2018			
3	Instrumental Methods of Analysis	H. H. Willard, L. L. Merritt	CBS Publishers	7th Edition- 2005			
4	Engineering Chemistry	Jain & Jain	Dhanpath Rai Publishing Company	17 th Edition - 2015			

			B.Tech 2	023 51/52		
	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Molecular Spectroscopy	C. N. Banwell	McGraw-Hill	4 th edn., 1995		
2	Principles of Physical Chemistry	B. R. Puri, L. R. Sharma, M. S. Pathania	Vishal Publishing Co	47th Edition, 2017		
3	Introduction to Spectroscopy	Donald L. Pavia	Cengage Learning India Pvt. Ltd	2015		
4	Polymer Chemistry: An Introduction	Raymond B. Seymour, Charles E. Carraher	Marcel Dekker Inc	4th Revised Edition, 1996		
5	The Chemistry of Nanomaterials: Synthesis, Properties and Applications	Prof. Dr. C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham	Wiley-VCH Verlag GmbH & Co. KGaA	2014		
6	Organic Electronics Materials and Devices	Shuichiro Ogawa	Springer Tokyo	2024		
7	Principles and Applications of Thermal Analysis	Gabbot, P	Oxford: Blackwell Publishing	2008		

Video Links (NPTEL, SWAYAM)					
lodule No.	Link ID				
	https://archive.nptel.ac.in/courses/104/106/104106137/				
	https://archive.nptel.ac.in/courses/113/105/113105102/				
1	https://archive.nptel.ac.in/courses/113/104/113104082/				
	https://www.youtube.com/watch?v=BeSxFLvk1h0				
	https://archive.nptel.ac.in/courses/113/104/113104102/				
2	https://archive.nptel.ac.in/courses/104/105/104105124/				
	https://archive.nptel.ac.in/courses/105/104/105104157/				
2	https://archive.nptel.ac.in/courses/104/106/104106137/ https://archive.nptel.ac.in/courses/113/105/113105102/ https://archive.nptel.ac.in/courses/113/104/113104082/ https://www.youtube.com/watch?v=BeSxFLvk1h0 https://archive.nptel.ac.in/courses/113/104/113104102/ https://archive.nptel.ac.in/courses/104/105/104105124/				

Continuous Assessment (10 Marks)

Continuous assessment evaluations are conducted based on laboratory associated with the theory.

Mark distribution

5. Preparation and Pre-Lab Work (2 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

6. Conduct of Experiments (2 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

7. Lab Reports and Record Keeping (3 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of
 experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

8. Viva Voce (3 Marks)

 Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for Lab Examination (5 Marks)

4. Procedure/Preliminary Work/Conduct of Experiments (2 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

5. Result (2 Marks)

• Accuracy of Results: Precision and correctness of the obtained results.

6. Viva Voce (1 Marks)

• Proficiency in answering questions related to theoretical and practical aspects of the subject.

List of Experiments Laboratory Experiments to be conducted in the virtual Mode

*Minimum 6 Experiments

Expt. Nos.	Experiment
1	Estimation of iron in iron ore
2	Estimation of copper in brass
3	Determination of cell constant and conductance of solutions
4	Calibration of pH meter and determination of pH of a solution
	Synthesis of polymers
5	(c) Urea-formaldehyde resin
3	(d) Phenol-formaldehyde resin
	Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in
6	solution
_	Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food
7	colorant)
8	Analysis of IR spectra
9	Identification of drugs using TLC

10	Estimation of total hardness of water-EDTA method
11	Estimation of dissolved oxygen by Winkler's method
12	Determination of calorific value using Bomb calorimeter
13	Determination of saponification value of a given vegetable oil
14	Determination of acid value of a given vegetable oil
15	Verification of Nernst equation for electrochemical cell.

Semester S1/S2

ENGINEERING GRAPHICS AND COMPUTER AIDED DRAWING

Course Code	GMEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-0-2-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory & Lab

Course Objectives:

- 1. To learn the principles and techniques of dimensioning and preparing engineering drawings.
- 2. To develop the ability to accurately interpret and understand engineering drawings.
- 3. To learn the features of CAD software

Module No.	Syllabus Description				
	Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination)				
1	Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Trace of a line. Inclination of lines with reference planes. True length and true inclinations of line inclined to both the reference planes.	9			

2	Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone and Cylinder only. Projection of solids in simple position including profile view. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.	9
3	Sections of Solids: Sections of Prisms, Pyramids, Cone and Cylinder only, with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems) Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes. (Exclude problems with through holes)	9
4	Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Sphere, Hemisphere and their combinations. Computer Aided Drawing (CAD): Introduction, Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitable software. (CAD, only internal evaluation)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment+ Lab Exam	Assignment+ Lab Exam Internal Examination-1		Total
5	10+5	10	10	40

End Semester Examination Marks (ESE)

Student can choose any one full question out of two questions from each module

2 Questions from one module.	Total
Total 8 Questions, each question carries 15 marks	60
(15x4 =60 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the projection of points and lines located in different	K2
	Quadrants	
	Prepare Multiview orthographic projections of objects by visualizing	К3
CO2	them in different positions	KS
CO3	Plot sectional views and develop surfaces of a given object	К3
CO4	Prepare pictorial drawings using the principles of isometric projection	К3
CO5	Sketch simple drawing using CAD tools.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										
CO2	3	2										
CO3	3	2										
CO4	3	2										
CO5	3	2	2		3							

Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Engineering Graphics	Varghese, P. I.	V I P Publishers	2018 edn						
2	Engineering Graphics,	Benjamin, J.	Pentex Publishers	2016 edn						
3	Engineering Graphics	John, K. C.	Prentice Hall India Publishers	2017 edn						
4	Engineering Drawing,	Bhatt, N., D.	Charotar Publishing House Pvt Ltd.	60th edn 2019						
5	Engineering Graphics,	Anilkumar, K. N.	Adhyuth Narayan Publishers	2022 edn						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Engineering Graphics with AutoCAD,	Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K.,	Prentice Hall India Publishers	2020							
2	Engineering Drawing & Graphics	Venugopal, K.	New Age International Publishers	5th edn 2011							
3	Engineering Drawing	Parthasarathy, N. S., and Murali, V.	Oxford University Press	2015 edn							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/112/102/112102304/								
2	https://archive.nptel.ac.in/courses/112/102/112102304/								
3	https://archive.nptel.ac.in/courses/112/102/112102304/								
4	https://archive.nptel.ac.in/courses/112/102/112102304/								

SEMESTER S1/S2 ENGINEERING MECHANICS

Course Code	GBEST103	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2-1-0-0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. The course aims to enable students to analyse and solve fundamental mechanics problems

Module	Syllabus Description	Contact				
No.	Synabus Description					
1	Introduction to statics: introduction to branches of mechanics, concept of rigid body scalars and vectors, vector operations, forces in space. Support reactions of beams (point load and UDL only) Force systems: rectangular components in 2D and 3D, moment and couple, resultants Equilibrium: system isolation and the free-body diagram, equilibrium conditions 2D and 3D	10				
2	Friction: -laws of friction – analysis of blocks and ladder Centroid of composite areas- – moment of inertia- parallel axis and perpendicular axis theorems. Polar moment of inertia, radius of gyration, mass moment of inertia-ring and disc	10				
3	Dynamics – rectilinear translation - equations of motion in kinematics and kinetics – D'Alembert's principle. –motion on horizontal and inclined surfaces, motion of connected bodies	8				
4	Curvilinear translation - equations of kinematics projectile motion (solution starting from differential equations) Rotation - kinematics of rotation- equation of motion for a rigid body rotating about a fixed axis -rotation under a constant moment	8				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks) Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject Assignment/ Examin 1(Write		Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	Understand the vector representation of forces and moments	K2					
CO2	Identify and describe the components of system of forces acting on the rigid body	К3					
CO3	Apply the conditions of equilibrium to different force system.	К3					
CO4	Identify appropriate principles to solve problems of mechanics.	К3					
CO5	Develop the understanding of fundamental principles of rigid body dynamics	К3					

Note:K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	3	3										
CO3	3	3										
CO4	3	3										
CO5	3	2										

Text Books						
Sl. N	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Engineering Mechanics	Timoshenko	McGraw	5 th Edition		
		and	Hill	2017		
		Young	Publishers			
	Engineering Mechanics:	Russell C. Hibbeler	Pearson	14 th		
2	Combined Statics and Dynamics		Education,	Edition 2015		
3	Engineering Mechanics -	Shames, I. H.	Prentice Hall	4 th Edition		
	Statics and Dynamics,		ofIndia.	2008		
4	Textbook of Engineering	R. K. Bansal	Laxmi	4 th Edition		
	Mechanics		publications pvt ltd.	2016		

Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Engineering Mechanics Statics	J. L. Meriam, L. G.	Wiley	9 th Edition 2020	
2	Engineering Mechanics	Kraige	PHI Learning	2011	

Video Links (NPTEL, SWAYAM)				
	Link ID			
1	https://nptel.ac.in/courses/112106286			

SEMESTER S1/S2

INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

Course Code	GXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. To provide an understanding of the fundamental principles of electrical engineering
- 2. To introduce the working principles of fundamental electronic devices and circuits
- 3. To provide an overview of the basic concepts in different types of communication.

SYLLABUS

Module No.	Syllabus Description			
1	Elementary concepts of DC electric circuits: Current and Voltage Division Rule - Relative potential Capacitors & Inductors: V-I relations and Energy stored. Ohms Law and Kirchhoff's laws - numerical problems. Star-delta conversion (resistive networks only - derivation not required) - numerical problems. Analysis of DC Electric circuits: Mesh current method - matrix representation - Solution of network equations.	11		

	Node voltage methods-matrix representation-solution of network equations	
	by matrix methods - numerical problems.	
	Elementary Concepts of Magnetic circuits:	
	Magnetic Circuits: Basic Terminology: MMF, field strength, flux density,	
	reluctance - Comparison between electric and magnetic circuits - Series and	
	parallel magnetic circuits with composite materials (numerical problems not	
	needed)	
	Electromagnetic Induction: Faraday's laws, Lenz's law- statically induced and dynamically induced emf	
	- Self-inductance and mutual inductance, coefficient of coupling (numerical	
	problems not needed)	
	Alternating Current fundamentals:	
	Generation of alternating voltages - Representation of sinusoidal waveforms:	
	frequency, period, average value, RMS value and form factor - numerical	
	problems	
	AC Circuits: Phasor representation of sinusoidal quantities, Trigonometric,	
	Rectangular, Polar and complex forms.	
2	Analysis of simple AC circuits: Purely resistive, inductive & capacitive	11
	circuits; Inductive and capacitive reactance, concept of impedance - numerical problems.	
	RL, RC and RLC series circuits- power factor, active, reactive and apparent	
	power. Simple numerical problems.	
	Three phase AC systems: Generation of three phase voltages, advantages of	
	three phase systems, star and delta connections (balanced only), relation	
	between line and phase voltages, line and	
	phase currents- numerical problems	
	Introduction to Electronic devices:	
2		10
3	Passive and active components in electronics	13
	Working of PN junction diode, V-I characteristics of PN Junction diode	
	Zener diode and avalanche breakdown. Basics of Zener voltage regulator	

	Block diagram of DC power supply, circuit and working of half wave, full wave and bridge rectifiers, ripple factor (with and without capacitor filters) Construction, working and V-I Characteristics of BJT, Input output characteristics of CE configuration, Comparison of CE, CB and CC configurations Concept of biasing and load line Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working) RC coupled amplifier - Circuit diagram and frequency response Introduction to FET, Construction and working of N-channel and P- Channel MOSFETs	
	Modern Electronics and its applications:	
4	General block diagram of a Communication system, Block diagram of Fiber optic Communication system Concept of AM and FM (No derivation required), Block diagram of AM and FM super-heterodyne receiver Basic concepts of Wired and Wireless communication, Block diagram of GSM Comparison of 3G, 4G, 5G and 6G communication technologies Block diagrams of Electronic instrumentation system, Digital Multimeter, Function generator Introduction to CRO and Lissajous patterns Applications of modern electronics – IoT based smart homes, healthcare and agriculture (Case study only)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	Two questions will be given from each module, out of	
Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to

	Course Outcome	Bloom's Knowledge Level (KL)		
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC	K2		
COI	electric circuits			
CO2	Classify series and parallel magnetic circuits	K2		
CO3	Understand three phase AC systems	K2		
CO4	Describe the fundamental concepts of electronic components and devices	K2		
CO5	Outline the principles of communication systems	K2		
CO6	Identify various applications of modern electronics in the contemporary world	K2		

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2											2
CO3	3	2										2
CO4	2	1										2
CO5	2											2
CO6	3		1			3	1					2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019			
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010			
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018			
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020			
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015			
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017			
7	Electronic Communication SYstems	Kennedy and Davis	McGraw Hill	6/e 2017			

	Reference Books						
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008			

SEMESTER S1/S2

INTRODUCTION TO MECHANICAL ENGINEERING & CIVIL ENGINEERING

Course Code	GCEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4-0-0-0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understand thermodynamic cycles and working of IC engines.
- 2. Understand the refrigeration cycles and psychrometric concepts.
- 3. Understand the relevance of civil engineering and its various disciplines.
- 4. Describe the relevance of various building codes and types of buildings as per NBC.
- 5. Understand different building components and building materials.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Thermodynamic cycles -Carnot Cycle -Derivation of efficiency (problems on efficiency) Otto, Diesel cycles (no derivation of efficiency and problems). IC Engines: CI & SI Engines, working of 2-Stroke & 4-Stroke engines. Listing the parts of IC Engines. Concept of CRDI, MPFI and hybrid engines. Refrigeration: Unit of refrigeration, reversed Carnot cycle, COP, vapour compression cycle (only description and no problems); Definitions of dry, wet & dew point temperatures, specific humidity and relative humidity, Psychrometric chart, Cooling and dehumidification, Layout of central air conditioning systems.	9

		D.100
	Classification of pumps, Description about working with sketches of:	
	Reciprocating pump, Centrifugal pump. Classification of Hydraulic	
	Turbines.	
	Different type of gears and its applications (spur, helical, bevel, worm	
	and worm wheel), List types of clutches and their use, Bearings and	
2	their classification (Journal bearing and ball bearing)	
	their classification (Journal bearing and bair bearing)	9
	Manufacturing Process: Sand Casting, Forging, Rolling, Extrusion.	
	Metal Joining Processes: List types of welding, Description with	
	sketches of Arc Welding, SMAW, Soldering and Brazing and their	
	applications.	
	Machining processes: Description and operations performed on	
	Lathe, Drilling machine, Milling machine, CNC machine, 3D	
	printing.	
	General Introduction to Civil Engineering: Relevance of Civil	
	Engineering in the overall infrastructural development of the country.	
	Brief introduction to major disciplines of Civil Engineering like	
	Structural Engineering, Geo-technical Engineering, Transportation	
	Engineering, Water Resources Engineering and Environmental	
	Engineering.	
3	Introduction to buildings: Types of buildings according to	9
	character of occupancy as per NBC, Load bearing and non-load	
	bearing building structures, components of a residential building and	
	their functions (conceptonly).	
	Selection of site for a residential building.	
	Building Area Definitions: Built up area, Plinth area, Floor area,	
	Carpet area and Floor area ratio of a building as per KBR.	
	Building rules and regulations: Relevance of NBC, KBR &	
	CRZ norms (brief discussion of relevance only).	
	Conventional construction materials: Brick, stone, sand, cement	
	and timber- Classifications, Qualities, Tests and Uses of construction	
4	materials. Cement concrete: Constituent materials, properties and	
_	types.	9
L		

Tests on fresh and hardened concrete - slump test, cube	
compressivestrength as per IS Codes.	
Steel: Structural steel sections and steel reinforcements – types and	
uses.	
Soil-Origin of soil-weathering of rocks, types of weathering	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the relevance of mechanical engineering and its	1/2
	various disciplines. Learn the applications of thermodynamics through IC engines and	K2
CO2	refrigeration systems.	К2
CO3	Understand the various manufacturing processes adapted by	
C03	mechanical engineers.	K2
CO4	Understand the relevance of civil engineering and its various	
CO4	disciplines.	K2
CO5	Describe the relevance of various building codes and types of	
CO5	buildings as per NBC	K2
CO6	Understand different building components and building materials.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											
CO2	3											
CO3	3											2
CO4	3											
CO5	3							2				2
CO6	3											2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Basic Mechanical Engineering	Pravin Kumar	Pearson Education	1 st Edition,2013
2	A Textbook of Basic MechanicalEngineering	R.K. Rajput	Laxmi Publications	3 rd Edition,2017
3	Elements of Mechanical Engineering	K.P. Roy, S.K. Hajra Choudhury, A.K. Hajra Choudhury	Media Promoters & Publishers Pvt. Ltd.	Revised Edition, 2012
4	Fundamentals of Mechanical Engineering	G.S. Sawhney	PHI Learning Pvt. Ltd.	1 st Edition,2013
5	Essentials of Civil Engineering	Dalal K R	Charotar Publishing house	1 st Edition 2012
6	Engineering Materials(Material Science)	Rangwala S C	Charotar PublishingHouse Pvt Limited	43 rd Edition2019
7	Building Materials	Duggal S K	New Age International	5 th Edition2019

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives	Chris Mi and M. Abul Masrur	John Wiley & Sons	2nd Edition, 2017
2	Automotive Engineering Fundamentals	Richard Stone and Jeffrey K. Ball	SAE International	1 st Edition, 2004
3	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing	Ian Gibson, David W. Rosen, and Brent Stucker	Springer	2 nd Edition, 2015
4	Heating, Ventilating, and AirConditioning Analysis and Design	Faye C. McQuiston, Jerald D. Parker, and Jeffrey D. Spitler	John Wiley & Sons	6 th Edition, 2005
5	Materials for Civil and Construction Engineering	Mamlouk, M.S.,and Zaniewski, J.P	Pearson Publishers	4 th Edition, 2017
6	Building Construction	Rangwala, S.C and Dalal, KB	Charotar Publishing house	34 th Edition 2022
7	Construction Technology Vol.I to IV	Chudley, R	Longman group,England Course Plan	2 nd Edition 2014
8	Building Construction Volumes1to4	Mckay, W.B.and Mckay, J.K	Pearson India Education Services	5 th Edition
9	Engineering Geology	Duggal S. K., Pandey H.K. and Rawat N,	Mcgraw Hill Education, New Delhi	1 st Edition 2017
10	Latest Building codes and a	l related rules and regulations		

	Video Links (NPTEL, SWAYAM)
Module No.	Link ID
	https://nptel.ac.in/courses/112/105/112105123/
1	https://nptel.ac.in/courses/112/106/112106133/
	https://nptel.ac.in/courses/112/105/112105129/
	https://nptel.ac.in/courses/112/105/112105171/
2	https://nptel.ac.in/courses/112/105/112105268/
	https://archive.nptel.ac.in/courses/112/107/112107145
3	https://archive.nptel.ac.in/courses/105/106/105106201/
4	https://archive.nptel.ac.in/courses/105/106/105106206/

SEMESTER S2

PROGRAMMING IN C

Course Code	GXEST205	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	2:0:2:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To prepare learner to write versatile C programs for solving computational problems that they come across in their professional life.
- **2.** To equip the learner to write efficient C programs using suitable language constructs to solve real world computational problems.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	C Fundamentals - Character Set, Constants, Identifiers, Keywords, Basic Data types, Variables, Operators and its precedence, Bit-wise operators, Expressions; Statements - Input and Output statements; Structure of a C program; Simple programs. Control Statements - if, if-else, nested if, switch, while, do-while, for, break & continue, nested loops.	9

B.Tech 2025 -S1/S2

I arrays, Defining an array, Array initialization, Enumerated data type; Type Definition; Two- g a two-dimensional array; Programs for matrix uential search; Bubble sort; variable, Reading and displaying strings, String	2
---	---

	related library functions – Programs for string matching.	
3	Functions - Function definition, Function call, Function prototype, Parameter passing; Recursion; Passing array to function; Macros - Defining and calling macros; Command line Arguments. Structures - Defining a Structure variable, Accessing members, Array of structures, Passing structure to function; Union. Storage Class - Storage Classes associated with variables: automatic, static, external and register.	9
4	Pointers - Declaration, Operations on pointers, Passing pointer to a function, Accessing array elements using pointers, Processing strings using pointers, Pointer to pointer, Array of pointers, Pointer to function, Pointer to structure, Dynamic Memory Allocation. Files- Different types of files in C, Opening & Closing a file, Writing to and Reading from a file, Processing files, Library functions related to file – fseek(), ftell(), fread(), fwrite().	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

 $Continuous\ Internal\ Evaluation\ Marks\ (CIE):$

B.Tech 2025 –S1/S2

Attendance	Continuous Assessment (Lab)	Internal Examination-1 (Written Examination)	Internal Examination- 2 (Written Examination)	Internal Examination- 3 (Lab Examination)	Total
5	5	10	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Infer a computational problem and develop C programs from them using basic constructs of C language including the control statements.	K2
CO2	Develop C programs using arrays, matrices, and strings.	К3
CO3	Utilize functions to find solution to the computational problems by dividing it into a number of modules and abstract data types.	К3
CO4	Develop C programs using pointers for dynamic data handling.	К3
CO5	Use files in C to permanently store and manipulate data.	К3

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	-	1	-	1	-	-	-	1
CO2	3	3	3	3	-	1	-	1	-	-	-	1
CO3	3	3	3	3	-	1	-	1	-	-	-	1
CO4	3	3	3	3	-	1	-	1	-	-	-	1
CO5	3	3	3	3	-	1	-	1	-	-	-	1

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Programming with C	Byron S Gottfried	Mc Graw Hill Education	4 th Edition July 2018				
2	The C Programming Language	Brian W. Kernighan and Dennis Ritchie	Pearson	2 nd Edition January 2015				
3	C The Complete Reference	Herbert Schildt	Mc Graw Hill Education	4 th Edition July 2017				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Programming In Ansi C	E Balagurusamy	Mc Graw Hill	8 th Edition March 2019				
2	Programming in C	Kamthane	Pearson	3rd Edition January 2015				
3	Let us C	Yashavant Kanetkar	Bpb publishers	19th Edition December 2022				
4	Computer Programming in C	V Rajaraman	PHI Learning Private Limited	2nd July 2019				

SEMESTER S2

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT247	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module	Syllabus Description					
No.	Synabus Description					
1	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role of confidentiality in moral integrity, Codes of Ethics. Basic concepts in Gender Studies - sex, gender, sexuality, gender spectrum: beyond the binary, gender identity, gender expression, gender stereotypes, Gender disparity and discrimination in education, employment and everyday life, History of women in Science & Technology, Gendered technologies & innovations, Ethical values and practices in connection with gender - equity, diversity & gender justice, Gender policy and women/transgender empowerment initiatives.	6				

	Introduction to Environmental Ethics: Definition, importance and	
	historical development of environmental ethics, key philosophical theories	
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering	
	Principles: Definition and scope, triple bottom line (economic, social and	
2	environmental sustainability), life cycle analysis and sustainability metrics.	6
	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	
	Importance of biodiversity and its conservation, Human impact on ecosystems	
	and biodiversity loss, An overview of various ecosystems in Kerala/India, and	
	its significance. Landscape and Urban Ecology: Principles of landscape	

	ecology, Urbanization and its environmental impact, Sustainable urban planning and green infrastructure.	
3	Hydrology and Water Management: Basics of hydrology and water cycle, Water scarcity and pollution issues, Sustainable water management practices, Environmental flow, disruptions and disasters. Zero Waste Concepts and Practices: Definition of zero waste and its principles, Strategies for waste reduction, reuse, reduce and recycling, Case studies of successful zero waste initiatives. Circular Economy and Degrowth: Introduction to the circular economy model, Differences between linear and circular economies, degrowth principles, Strategies for implementing circular economy practices and degrowth principles in engineering. Mobility and Sustainable Transportation: Impacts of transportation on the environment and climate, Basic tenets of a Sustainable Transportation design, Sustainable urban mobility solutions, Integrated mobility systems, E-Mobility, Existing and upcoming models of sustainable mobility solutions.	6
4	Renewable Energy and Sustainable Technologies: Overview of renewable energy sources (solar, wind, hydro, biomass), Sustainable technologies in energy production and consumption, Challenges and opportunities in renewable energy adoption. Climate Change and Engineering Solutions: Basics of climate change science, Impact of climate change on natural and human systems, Kerala/India and the Climate crisis, Engineering solutions to mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.	6

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various

courses.

Sl. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	I	5
2	Micro project (Detailed documentation of	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics	G	8
	the project, including methodologies,	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	findings, and reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
	•	Total Marks		50

^{*}Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- **Application of Concepts**: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- Presentation Skills: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011							
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006							
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023							
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019							
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012							
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.							
	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014							

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption - What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting
 design and implementation faults and possible corrections/alternatives (e.g., a housing complex with
 water logging, a water management project causing frequent floods, infrastructure project that affects
 surrounding landscapes or ecosystems).

SEMESTER S1/S2

BASIC ELECTRICAL AND ELECTRONICS

ENGINEERING WORKSHOP

Course Code	GXESL106	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:2:0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Course Objectives:

- 1. To create awareness and familiarity with electrical wiring and safety measures to be taken.
- 2. To Identify various electronic components and to operate various measuring instruments
- 3. Learn to setup simple electronic circuits on breadboard and PCB

Expt. No.	Experiments								
Electrical W	Orkshop (Minimum of 7 Experiments to be done)								
1	c) Demonstrate the precautionary steps adopted in case of Electrical shocks.d) Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB, familiarize the ratings.								
2	Wiring of a simple light circuit for light/ fan point (PVC conduit wiring) and a 6A plug socket with individual control.								
3	Wiring of light/fan circuit using two-way switches. (Staircase wiring)								
4	Wiring of fluorescent lamp and a power plug (16 A) socket with a control switch.								
5	Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.								
6	Familiarisation of step up and step-down transformers, (use low voltage transformers) Measurement and representation of voltage and waveform to scale in graph sheet with the help of CRO								

Familiarisation of rheostats, measurement of potential across resistance elements and
introducing the concept of relative potential using a DC circuit.
c) Identify battery specifications using different types of batteries. (Lead acid, Li Ion, NiCd etc.)
d) Familiarize different types of earthing (Pipe, Plate Earthing, Mat Schemes) and
ground enhancing materials (GEM).

	ELECTRONICS WORKSHOP (Minimum of 7 Experiments to be done)				
	Familiarization/Identification of electronic components with specification (Functionality, type,				
1	size, colour coding, package, symbol and cost of -Active, Passive, Electrical, Electronic, Electro-				
1	mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays,				
	Crystals, Displays, Fasteners, Heat sink etc.)				
2	Drawing of electronic circuit diagrams using BIS/IEEE symbols and Interpret data sheets of discrete components and IC's				
	Familiarization/Application of testing instruments and commonly used tools Multimeter,				
3	Function generator, Power supply, CRO, DSO.				
3	Soldering iron, Desoldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers,				
	Crimping tool, Hot air soldering and de-soldering station				
	Testing of electronic components using multimeter - Resistor, Capacitor, Diode, Transistor				
4	and JFET.				
	Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processingmethods.				
5	Design and fabrication of a single sided PCB for a simple circuit.				
	Inter-connection methods and soldering practice.				
6	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety precautions.				
	Soldering practice in connectors and general-purpose PCB, Crimping.				
	Assembling of electronic circuit/system on general purpose PCB, test and show the				
	functioning (Any two)-				
7	Fixed voltage power supply with transformer				
	Rectifier diode				
	Capacitor filter				
	Zener/IC regulator Square years generation using IC 555 timer in IC base				
8	Square wave generation using IC 555 timer in IC base. Assembling of electronic circuits using SMT (Surface Mount Technology) stations.				
9	Introduction to EDA tools (such as KiCad or XCircuit)				

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work, experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Total
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum
 is that the student must score a minimum of 50% overall, combining marks from both Continuous
 Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum
 requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome						
CO1	CO1 Demonstrate safety measures against electrical shocks						
CO2	Familiarise with transformers, rheostats, batteries and earthing schemes	K2					
CO3	Illustrate the connection diagram and identify the suitable accessories necessary for wiring simple electric circuits	К3					
CO4	Identify various electronic components	K2					
CO5	Operate various measuring instruments	К3					
CO6	Apply the design procedure of simple electronic circuits on breadboard and PCB	К3					
CO7	Build the ability to work in a team with good interpersonal skills	К3					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3						2
CO2	1					2	1					2
CO3	2					1						2
CO4	3					2						3
CO5	3				3	2			2			3
CO6	3		3	1	3	2	1		2			3
CO7									3	2		2

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Electrical Design Estimating and Costing	K B Raina and S KBhattacharya	New Age International Publishers	2/e 2024						
2	Electrical Systems Design	M K Giridharan	I K International Publishing House Pvt. Ltd	3/e 2022						
3	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019						
4	Basic Electronics and Linear Circuits	NN Bhargava, D C Kulshreshtha and S C Gupta	Mc Graw Hill	2/e 2017						

Continuous Assessment with equal weightage for both specializations (45 Marks)

1. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

4. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

5. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voice session.

Evaluation Pattern for End Semester Examination with equal weightage in both specializations (50 Marks)

6. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

7. Conduct of Experiment/Execution of Work/Programming (15 Marks)

 Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

8. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality

9. Viva Voce (10 Marks)

- · Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

10. Record (5 Marks)

· Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S1 /S2
BASIC MECHANICAL AND CIVIL ENGINEERING LAB

Course Code	GCESL106	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0-0-2-0	ESE Marks (Internal only)	50
Credits	1	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1.To enable the student to familiarize various tools, measuring devices, practices and differentmethods employed in the industry.
- 2.To enable the students to apply this experience while developing product/project for thebenefit of society.

Expt.	Experiments
No.	(Minimum 12 Exercises)
	General: Introduction to workshop practice, Safety precautions, Shop floor ethics,
	and Basic First Aid knowledge. Study of mechanical and measurement tools,
	components and their applications: (a) Tools: screw drivers, spanners, Allen keys,
1	cutting pliers etc. and accessories (b) bearings, seals, O-rings, circlips, keys
1	etc.(c)Vernier Calipers, Height
	Gauge, Depth Gauge, Micrometers, Bevel Protractor etc.
	Carpentry: Understanding carpentry tools and knowledge of at least one model
2	1. T – Lap joint 2. Cross lap joint 3. Dovetail joint 4. Mortise joints
	Foundry: Understanding of foundry tools and knowledge of at least one model
3	1. Bench Moulding 2. Floor Moulding 3. Core making 4. Pattern making
	Sheet Metal: Understanding sheet metal working tools and knowledge of at
4	least one model
4	1. Cylindrical shape 2. Conical shape 3. Prismatic shaped job from sheet metal

	Fitting: Understanding the tools used for fitting and knowledge of at least one
5	model
	1. Square Joint 2. V- Joint 3. Male and female fitting

	Plumbing: - Understanding plumbing tools and pipe joints, along with		
6	practicing one exercise on joining pipes using a minimum of three types of pipe		
	joints		
7	Smithy: - Understanding the tools used in smithy. Demonstrating the forge-		
	ability of different materials (MS, Al, alloy steel and cast steels) in both cold		
	and hot states. Observing the qualitative difference in the hardness of these		
	materials. One exercise on smithy (Square prism).		
	Welding: Understanding welding equipment and practicing at least one welding		
8	technique, such as making joints using electric arc welding. Bead formation in		
	horizontal, vertical-and overhead positions		
	Assembly: Demonstration only Dissembling and assembling of		
9	1. Cylinder and piston assembly 2. Tail stock assembly 3. Bicycle 4. Pump or		
	any other machine		
	Use of proper Personal Protective Equipments. Measurements using Tape, Ruler,		
10	Vernier calipers, screw gauge		
11	Measuring the area of a plot with an irregular boundary using a chain and cross		
	Staff		
12	Measuring the area of a building using Distomat		
13	Finding the level difference between two points using dumpy level		
14	Onsite quality assessment of brick, and cement		

	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum
15	length of 60 cm using English bond. Check the verticality of the wall
	Construct a 1 and 1 ½ thick brick wall with a height of 50 cm and a minimum
16	length of 60 cm using Flemish bond. Check the verticality of the wall
	Estimate the number of different types of building blocks needed to construct the
17	walls of a room measuring 2m x 3m, accounting for standard-sized doors and windows.
18	Setting out of a two roomed building using thread, tape and water tube levelling.

Conduct a market study to understand the types, prices, and general specifications of at least three materials available in the market (such as bricks, cement, aggregates, steel, plumbing items, fixtures, welding rods, fasteners etc.).

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	ttendance Preparation/Pre-Lab Work, experiments, Viva and Timelycompletion of Lab Reports / Record (Continuous Assessment)	
5	45	50

End Semester Examination Marks (ESE): (Internal evaluation only)

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Minimum Pass Mark: The requirement for passing the lab course included in the first-year curriculum is that the student must score a minimum of 50% overall, combining marks from both Continuous Internal Evaluation (CIE) and End Semester Examination (ESE). There is no separate minimum requirement for each component.
- There will not be any relaxation in the attendance requirement.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Identify workshop operations and instruments in accordance with the material and objects.	К3			
CO2	CO2 Understand appropriate tools and instruments with respect to the workshop specializations.				
CO3	Apply various tools, measuring devices, practices and different methods employed in the industry.	К3			
CO4	Examine the quality of common materials used in the industry.	К3			
CO5	Conduct market study of various engineering materials and consumables available in the market.	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3									2		2
CO2	3									2		2
CO3	3				2					2		3
CO4	3									2		3
CO5	3								2	3		3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Mechanical Workshop Practice	K C John	PHI Learning	Edition 2 2010					
2	Engineering Materials	S C Rangwala	Charotar Publishing House Pvt Limited	Edition 43 2019					
3	Building Materials	S K Duggal	New Age International	Edition 6 2025					
4	Indian Practical Civil EngineeringHandbook	Khanna P.N,	UBS Publishers Distributers (P) Ltd.	Year 2012					
5	Building Construction	Arora S.P and Bindra S.P	Dhanpat Rai Publications	Edition 5 Year 2022					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Elements of Workshop Technology Vol-1- ManufacturingProcesses	S K Hajra Choudhury A K Hajra Choudhury Nirjhar Roy	MPP Media Promoters and Publishers	2008				

Video Links (NPTEL, SWAYAM)					
Link ID					
https://archive.nptel.ac.in/courses/105/106/105106206/					
https://archive.nptel.ac.in/courses/105/106/105106201/					
https://archive.nptel.ac.in/courses/105/104/105104101/					
https://archive.nptel.ac.in/courses/117/106/117106108/					

Continuous Assessment (45 Marks)

5. Preparation and Pre-Lab Work (10 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

6. Conduct of Experiments (15 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

7. Lab Reports and Record Keeping (10 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record andmaintaining a well-organized fair record.

8. Viva Voce (10 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Evaluation Pattern for End Semester Examination (50 Marks)

6. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to theexperiment.
- Creativity and logic in algorithm or experimental design.

7. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

8. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

9. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

10. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S2

NATIONAL SERVICE SCHEME/NATURECONSERVATION ACTIVITIES

Course Code	UCHUT128	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	1:0:1:0	ESE Marks	0
Credits	0	Exam Hours	Nil
Prerequisites (if any)	None	Course Type	

Course Objectives:

- 1. To instill environmental and social responsibility.
- 2. To promote drug-free lifestyles and prevent substance abuse among youth.
- 3. To empower students through hands-on service and awareness programs.
- 4. To engage with communities on issues of ecology, health, and youth well-being.
- 5. Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	NSS Foundation & Youth Engagement: History, motto, objectives of NSS, Role of youth in nation-building, Volunteerism and leadership.	
1	Environmental Conservation: Biodiversity and ecosystem balance, Environmental pollution, waste management, Climate change and its impact on society.	6
	HEALTH, HYGIENE, SANITATION AND YOGA: Importance of health, hygiene, and sanitation, various Govt., Programmes, Healthy life style, HIV /AIDS, drugs and substance abuse, First Aids, Yoga for healthy living	

2	Advanced Conservation and Community Initiatives: Water and soil conservation methods, Clean energy and sustainable practices, Local biodiversity mapping, Organic farming and kitchen garden initiatives. Drug Abuse Prevention & Social Health: Role of family, school, and peer group in prevention, Case studies on addiction and recovery, Role of NSS volunteers in anti-drug campaigns, Collaboration with local NGOs, rehabilitation centers, law enforcement	6
	Disaster Preparedness & Community Resilience: Disaster risk reduction and climate adaptation, First aid, emergency response, Volunteer roles during natural calamities	
3	Field Activities: 1.Environmental & Nature Conservation Activities Tree Plantation Drives Conducted on campus or in nearby villages Include awareness talks on benefits of afforestation Campus Cleanliness and Beautification Weekly clean-up drives under Swachh Bharat Abhiyan Installation of dustbins and eco-friendly signage	10

	Vermicomposting demonstration or setup							
	Nature Trails and Biodiversity Walks							
	 Field visits to national parks, sanctuaries, or local eco-parks Flora-fauna identification and mapping 							
	2.Disaster Management & Emergency Preparedness							
	Mock Drills & Training							
	Fire safety, first aid, and evacuation procedures							
	• Flood/Drought Relief Work							
	Volunteer support during natural calamities							
	Distribution of food packets, clothes, medicines							
	Road Safety Awareness Drive							
	Reflective stickers, helmets, traffic rules education							
	3.Health, Hygiene & Drug Awareness Activities							
	Drug Abuse Awareness Rally							
	Collaboration with NGOs or Narcotics Bureau							
4	Posters, placards, slogans, and street plays	8						
4	Health Check-up Camps	0						
	➤ In collaboration with local health departments							
	Free medical and dental check-ups for rural or urban poor							
	Personal Hygiene Awareness in Schools							
	> Demonstrations and kits distribution in government schools							
	None and Mandal XXI allows XXI and all and							
	Yoga and Mental Wellness Workshops							

Daily or weekly sessions during camps or regular activity hours

4. Community Development Activities

Village Adoption Program

- ➤ Identify a nearby village for year-round development efforts
- Focus areas: sanitation, education, clean water, livelihood

Adult Education/Literacy Campaigns

Evening teaching programs in slums or rural areas

Digital Literacy Program

Teach basic smartphone/internet usage to villagers or senior citizens

Awareness Drives

Topics: Child labor, gender equality, legal rights, voting rights

Course Assessment Method (CIE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Case Study/Micro project/Field Visit	Activity evaluation	Total
10	20	20	50

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the importance of his / her responsibilities towards society.	К2
CO2	Analyse the environmental and societal problems/issues and will be able to design solutions for the same.	K4
CO3	Evaluate the existing system and to propose practical solutions for the same for sustainable development.	K5
CO4	Implement government or self-driven projects effectively in the field.	К3
CO5	Develop capacity to meet emergencies and natural disasters & practice national integration and social harmony in general.	K6

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2				3	2	2	3	2		2
CO2	1	3	3	2	2	3	3	2	2	2		2
CO3	2	3	3	3	2	3	3	2	3	3	2	2
CO4	2	2	3	2	3	3	2	2	3	3	3	2
CO5	2	2	2	3	2	3	3	3	3	2	2	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	National Service Scheme (NSS) – A Handbook	Ministry of Youth Affairs & Sports	Government of India,	Revised Edition 2021			
2	Disaster Management	Harsh K. Gupta	Universities Press	Latest Edition 2020			
3	Value Education and Human R. R. Gaur, R. Sangal, G. Excel Books	Rights R. R. Gaur, R. Sangal, G Excel Books	AICTE Recommended	2021 Edition			

Continuous Internal Evaluation Marks (CIE):

Students will be evaluated as follows.

Title	Method of Evaluation				
	Students must attend at least 75% of both theory	and practical classes. They will			
	receive 10 marks based on their class attendance	2.			
Attendance	Students who do not meet the minimum attenda	nce requirement for a course, as			
	specified in the B. Tech regulations, will not be e	ligible to proceed to the next criteria.			
	Case study will be given to students to as	ssess their understanding of the			
	subjects taughtStudents will be awarded a	total of 20 marks based on their			
Case	fieldwork, social projects, group campaign	or presentation, and submitted			
study/Micro	assignments or reports.				
Project/field	c .				
Visit					
	Students must take part in at least 8 activities 20 marks. Field Activity – Evaluation M (Total: 20 Marks)	Iark Split-Up			
	Component	Marks			
	Participation in minimum 8 activities	8 marks			
Activity Evaluation	Report submission (clarity & completeness)	4 marks 4 marks			
	Final group campaign or presentation Involvement, teamwork & initiative	4 marks			
	involvement, teamwork & initiative	4 marks			
	Total	20 marks			
	Note:Last Activity Report should be Faculty Coordinator	e signed by NSS Officer &			

PROGRAMME CORE 1

SEMESTER S2

NETWORK THEORY

Course Code	PCECT206	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To analyze electrical networks using Mesh / Nodal methods /network theorems
- 2. To analyze transient behavior of electrical networks using Laplace transform
- **3.** To identify the network functions and parameters of single-port and two-port networks.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Network fundamentals and analysis methods: Concept of networks and circuits, Circuit variables, Ideal and practical sources, Independent and dependent sources, Source transformation, Kirchhoff's laws. Mesh analysis, Node analysis, Super-mesh analysis and super-node analysis applied to both DC and AC networks containing independent and dependent sources.	11

2	Network theorems and applications: Superposition theorem, Reciprocity theorem, Thevenin's theorem, Norton's theorem, Millman's theorem and Maximum power transfer theorem for the analysis of DC and AC networks having independent and dependent sources.	11
3	Laplace transforms and transient analysis: Laplace transforms of standard signals and common functions, Laplace transform theorems (proof not required), Inverse Laplace transforms, Solution of differential equations. Transformation of basic signals and circuits to s – domain with and without initial conditions. Transient analysis of RL, RC and RLC networks with DC, impulse, step and sinusoidal inputs. Analysis of low pass and high pass RC circuits using Laplace transforms.	11
4	Network functions and two-port parameters: Network functions for single-port and two-port networks, Properties of driving point and transfer functions, Significance of poles and zeros of network functions, Pole-zero plot. Impedance, Admittance, Hybrid and Transmission parameters of two-port networks, Reciprocity and symmetry conditions (derivation not required), Inter-relationships between parameters, Series and parallel connections of two-port networks.	11

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
2 Questions from each	Each question carries 9 marks.		
module.	Two questions will be given from each module, out of		
Total of 8 Questions, each	which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Analyze electrical networks using mesh and node methods	K4
CO2	Apply network theorems to analyze electrical networks	К3
CO3	Analyze transient behavior of electrical networks using Laplace transforms	K4
CO4	Identify the network functions and parameters of single-port and two- port networks	К2

Note: K1-Remember, K2-Understand, K3-Apply, K4-Analyse, K5-Evaluate, K6-Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	2									2
CO3	3	3	3	2								2
CO4	3	3	2	3								2

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Basic Engineering Circuit Analysis	R. Mark Nelms, J. David	Irwin Wiley	12/e, 2020					
2	Network Analysis and Synthesis	Franklin F. Kuo	Wiley	2/e, 2012					
3	Circuits and Networks- Analysis and Synthesis	Sudhakar A and Shyammohan S. P	McGraw Hill	5/e, 2015					
4	Network Analysis	Van Valkenburg M.E	Prentice Hall India	Revised 3/e,2019					

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Circuit Theory Analysis and Synthesis	Abhijit Chakrabarti	Dhanpat Rai & Co.	Revised 7/e, 2018				
2	Electric Circuits – Schaum's Outline Series	Joseph A. Edminister, K. Rao and M. Nahvi	McGraw-Hill	5/e, 2017				
3	Electric Circuits and Networks	K. S. Suresh Kumar	Pearson	2008				
4	Network analysis and synthesis	Ravish R	McGraw-Hil	2/e,2015				